A Unified Review of Deep Learning for Automated Medical Coding
- URL: http://arxiv.org/abs/2201.02797v5
- Date: Fri, 10 May 2024 09:58:46 GMT
- Title: A Unified Review of Deep Learning for Automated Medical Coding
- Authors: Shaoxiong Ji, Wei Sun, Xiaobo Li, Hang Dong, Ara Taalas, Yijia Zhang, Honghan Wu, Esa Pitkänen, Pekka Marttinen,
- Abstract summary: This review proposes a unified framework to provide a general understanding of the building blocks of medical coding models.
Our framework decomposes medical coding into four main components, i.e., encoder modules for text feature extraction, decoder modules for transforming hidden representations into medical codes, and the usage of auxiliary information.
- Score: 12.720016900175462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated medical coding, an essential task for healthcare operation and delivery, makes unstructured data manageable by predicting medical codes from clinical documents. Recent advances in deep learning and natural language processing have been widely applied to this task. However, deep learning-based medical coding lacks a unified view of the design of neural network architectures. This review proposes a unified framework to provide a general understanding of the building blocks of medical coding models and summarizes recent advanced models under the proposed framework. Our unified framework decomposes medical coding into four main components, i.e., encoder modules for text feature extraction, mechanisms for building deep encoder architectures, decoder modules for transforming hidden representations into medical codes, and the usage of auxiliary information. Finally, we introduce the benchmarks and real-world usage and discuss key research challenges and future directions.
Related papers
- COGNET-MD, an evaluation framework and dataset for Large Language Model benchmarks in the medical domain [1.6752458252726457]
Large Language Models (LLMs) constitute a breakthrough state-of-the-art Artificial Intelligence (AI) technology.
We outline Cognitive Network Evaluation Toolkit for Medical Domains (COGNET-MD)
We propose a scoring-framework with increased difficulty to assess the ability of LLMs in interpreting medical text.
arXiv Detail & Related papers (2024-05-17T16:31:56Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Align, Reason and Learn: Enhancing Medical Vision-and-Language
Pre-training with Knowledge [68.90835997085557]
We propose a systematic and effective approach to enhance structured medical knowledge from three perspectives.
First, we align the representations of the vision encoder and the language encoder through knowledge.
Second, we inject knowledge into the multi-modal fusion model to enable the model to perform reasoning using knowledge as the supplementation of the input image and text.
Third, we guide the model to put emphasis on the most critical information in images and texts by designing knowledge-induced pretext tasks.
arXiv Detail & Related papers (2022-09-15T08:00:01Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - Multitask Recalibrated Aggregation Network for Medical Code Prediction [19.330911490203317]
We propose a multitask recalibrated aggregation network to solve the challenges of encoding lengthy and noisy clinical documents.
In particular, multitask learning shares information across different coding schemes and captures the dependencies between different medical codes.
Experiments with a real-world MIMIC-III dataset show significantly improved predictive performance.
arXiv Detail & Related papers (2021-04-02T09:22:10Z) - Does the Magic of BERT Apply to Medical Code Assignment? A Quantitative
Study [2.871614744079523]
It is not clear if pretrained models are useful for medical code prediction without further architecture engineering.
We propose a hierarchical fine-tuning architecture to capture interactions between distant words and adopt label-wise attention to exploit label information.
Contrary to current trends, we demonstrate that a carefully trained classical CNN outperforms attention-based models on a MIMIC-III subset with frequent codes.
arXiv Detail & Related papers (2021-03-11T07:23:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - COSEA: Convolutional Code Search with Layer-wise Attention [90.35777733464354]
We propose a new deep learning architecture, COSEA, which leverages convolutional neural networks with layer-wise attention to capture the code's intrinsic structural logic.
COSEA can achieve significant improvements over state-of-the-art methods on code search tasks.
arXiv Detail & Related papers (2020-10-19T13:53:38Z) - Medical Code Assignment with Gated Convolution and Note-Code Interaction [39.079615516043674]
We propose a novel method, gated convolutional neural networks, and a note-code interaction (GatedCNN-NCI) for automatic medical code assignment.
With a novel note-code interaction design and a graph message passing mechanism, we explicitly capture the underlying dependency between notes and codes.
Our proposed model outperforms state-of-the-art models in most cases, and our model size is on par with light-weighted baselines.
arXiv Detail & Related papers (2020-10-14T11:37:24Z) - Dilated Convolutional Attention Network for Medical Code Assignment from
Clinical Text [19.701824507057623]
This paper proposes a Dilated Convolutional Attention Network (DCAN), integrating dilated convolutions, residual connections, and label attention, for medical code assignment.
It adopts dilated convolutions to capture complex medical patterns with a receptive field which increases exponentially with dilation size.
arXiv Detail & Related papers (2020-09-30T11:55:58Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.