Lazy Lagrangians with Predictions for Online Learning
- URL: http://arxiv.org/abs/2201.02890v1
- Date: Sat, 8 Jan 2022 21:49:10 GMT
- Title: Lazy Lagrangians with Predictions for Online Learning
- Authors: Daron Anderson, George Iosifidis, and Douglas J. Leith
- Abstract summary: We consider the general problem of online convex optimization with time-varying additive constraints.
A novel primal-dual algorithm is designed by combining a Follow-The-Regularized-Leader iteration with prediction-adaptive dynamic steps.
Our work extends the FTRL framework for this constrained OCO setting and outperforms the respective state-of-the-art greedy-based solutions.
- Score: 24.18464455081512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the general problem of online convex optimization with
time-varying additive constraints in the presence of predictions for the next
cost and constraint functions. A novel primal-dual algorithm is designed by
combining a Follow-The-Regularized-Leader iteration with prediction-adaptive
dynamic steps. The algorithm achieves $\mathcal O(T^{\frac{3-\beta}{4}})$
regret and $\mathcal O(T^{\frac{1+\beta}{2}})$ constraint violation bounds that
are tunable via parameter $\beta\!\in\![1/2,1)$ and have constant factors that
shrink with the predictions quality, achieving eventually $\mathcal O(1)$
regret for perfect predictions. Our work extends the FTRL framework for this
constrained OCO setting and outperforms the respective state-of-the-art
greedy-based solutions, without imposing conditions on the quality of
predictions, the cost functions or the geometry of constraints, beyond
convexity.
Related papers
- Optimistic Safety for Online Convex Optimization with Unknown Linear Constraints [31.526232903811533]
We introduce an algorithm that we term Optimistically Safe OCO (OSOCO) and show it enjoys $tildeO(sqrtT)$ regret and no constraint violation.
In the case of static linear constraints, this improves on the previous best known $tildeO(T2/3)$ regret under the same assumptions.
In the case of time-varying constraints, our work supplements existing results that show $O(sqrtT)$ regret and $O(sqrtT)$ cumulative violation
arXiv Detail & Related papers (2024-03-09T04:01:39Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - Projection-Free Online Convex Optimization with Stochastic Constraints [0.0]
We develop projection-free algorithms for online convex optimization with constraints.
We deduce sublinear regret and constraint violation bounds for various settings.
We prove that the constraint violation can be reduced to have the same growth as the regret.
arXiv Detail & Related papers (2023-05-02T11:27:34Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Regret and Cumulative Constraint Violation Analysis for Online Convex
Optimization with Long Term Constraints [24.97580261894342]
This paper considers online convex optimization with long term constraints, where constraints can be violated in intermediate rounds, but need to be satisfied in the long run.
A novel algorithm is first proposed and it achieves an $mathcalO(Tmaxc,1-c)$ bound for static regret and an $mathcalO(T(1-c)/2)$ bound for cumulative constraint violation.
arXiv Detail & Related papers (2021-06-09T15:18:06Z) - Conservative Stochastic Optimization with Expectation Constraints [11.393603788068777]
This paper considers convex optimization problems where the objective and constraint functions involve expectations with respect to the data indices or environmental variables.
Online and efficient approaches for solving such problems have not been widely studied.
We propose a novel conservative optimization algorithm (CSOA) that achieves zero constraint violation and $Oleft(T-frac12right)$ optimality gap.
arXiv Detail & Related papers (2020-08-13T08:56:24Z) - Dynamic Regret of Convex and Smooth Functions [93.71361250701075]
We investigate online convex optimization in non-stationary environments.
We choose the dynamic regret as the performance measure.
We show that it is possible to further enhance the dynamic regret by exploiting the smoothness condition.
arXiv Detail & Related papers (2020-07-07T14:10:57Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.