Open-Set Recognition of Breast Cancer Treatments
- URL: http://arxiv.org/abs/2201.02923v1
- Date: Sun, 9 Jan 2022 04:35:55 GMT
- Title: Open-Set Recognition of Breast Cancer Treatments
- Authors: Alexander Cao, Diego Klabjan and Yuan Luo
- Abstract summary: Open-set recognition generalizes a classification task by classifying test samples as one of the known classes from training or "unknown"
We apply a recent existing Gaussian mixture variational autoencoder model, which achieves state-of-the-art results for image datasets, to breast cancer patient data.
Not only do we obtain more accurate and robust classification results, with a 24.5% average F1 increase compared to a recent method, but we also reexamine open-set recognition in terms of deployability to a clinical setting.
- Score: 91.3247063132127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-set recognition generalizes a classification task by classifying test
samples as one of the known classes from training or "unknown." As novel cancer
drug cocktails with improved treatment are continually discovered, predicting
cancer treatments can naturally be formulated in terms of an open-set
recognition problem. Drawbacks, due to modeling unknown samples during
training, arise from straightforward implementations of prior work in
healthcare open-set learning. Accordingly, we reframe the problem methodology
and apply a recent existing Gaussian mixture variational autoencoder model,
which achieves state-of-the-art results for image datasets, to breast cancer
patient data. Not only do we obtain more accurate and robust classification
results, with a 24.5% average F1 increase compared to a recent method, but we
also reexamine open-set recognition in terms of deployability to a clinical
setting.
Related papers
- Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning [1.4053129774629076]
This study presents an unsupervised domain adaptation method aimed at autonomously generating image masks outlining regions of interest (ROIs) for differentiating breast lesions in breast ultrasound (US) imaging.
Our semi-supervised learning approach utilizes a primitive model trained on a small public breast US dataset with true annotations.
This model is then iteratively refined for the domain adaptation task, generating pseudo-masks for our private, unannotated breast US dataset.
arXiv Detail & Related papers (2024-04-18T18:25:00Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Robust Tumor Detection from Coarse Annotations via Multi-Magnification
Ensembles [11.070094685209598]
We present a novel ensemble method that significantly improves the detection accuracy of metastasis on the open CAMELYON16 data set of sentinel lymph nodes of breast cancer patients.
Our experiments show that better results can be achieved with our technique making it clinically feasible to use for cancer diagnosis.
arXiv Detail & Related papers (2023-03-29T08:41:22Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Oral cancer detection and interpretation: Deep multiple instance
learning versus conventional deep single instance learning [2.2612425542955292]
Current medical standard for setting an oral cancer (OC) diagnosis is histological examination of a tissue sample from the oral cavity.
To introduce this approach into clinical routine is associated with challenges such as a lack of experts and labour-intensive work.
We are interested in AI-based methods that reliably can detect cancer given only per-patient labels.
arXiv Detail & Related papers (2022-02-03T15:04:26Z) - Margin-Aware Intra-Class Novelty Identification for Medical Images [2.647674705784439]
We propose a hybrid model - Transformation-based Embedding learning for Novelty Detection (TEND)
With a pre-trained autoencoder as image feature extractor, TEND learns to discriminate the feature embeddings of in-distribution data from the transformed counterparts as fake out-of-distribution inputs.
arXiv Detail & Related papers (2021-07-31T00:10:26Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Open-Set Recognition with Gaussian Mixture Variational Autoencoders [91.3247063132127]
In inference, open-set classification is to either classify a sample into a known class from training or reject it as an unknown class.
We train our model to cooperatively learn reconstruction and perform class-based clustering in the latent space.
Our model achieves more accurate and robust open-set classification results, with an average F1 improvement of 29.5%.
arXiv Detail & Related papers (2020-06-03T01:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.