A Multi-agent Reinforcement Learning Approach for Efficient Client
Selection in Federated Learning
- URL: http://arxiv.org/abs/2201.02932v1
- Date: Sun, 9 Jan 2022 05:55:17 GMT
- Title: A Multi-agent Reinforcement Learning Approach for Efficient Client
Selection in Federated Learning
- Authors: Sai Qian Zhang, Jieyu Lin, Qi Zhang
- Abstract summary: Federated learning (FL) is a training technique that enables client devices to jointly learn a shared model.
We design an efficient FL framework which jointly optimize model accuracy, processing latency and communication efficiency.
Experiments show that FedMarl can significantly improve model accuracy with much lower processing latency and communication cost.
- Score: 17.55163940659976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a training technique that enables client devices
to jointly learn a shared model by aggregating locally-computed models without
exposing their raw data. While most of the existing work focuses on improving
the FL model accuracy, in this paper, we focus on the improving the training
efficiency, which is often a hurdle for adopting FL in real-world applications.
Specifically, we design an efficient FL framework which jointly optimizes model
accuracy, processing latency and communication efficiency, all of which are
primary design considerations for real implementation of FL. Inspired by the
recent success of Multi-Agent Reinforcement Learning (MARL) in solving complex
control problems, we present \textit{FedMarl}, an MARL-based FL framework which
performs efficient run-time client selection. Experiments show that FedMarl can
significantly improve model accuracy with much lower processing latency and
communication cost.
Related papers
- Prioritizing Modalities: Flexible Importance Scheduling in Federated Multimodal Learning [5.421492821020181]
Federated Learning (FL) is a distributed machine learning approach that enables devices to collaboratively train models without sharing their local data.
Applying FL to real-world data presents challenges, particularly as most existing FL research focuses on unimodal data.
We propose FlexMod, a novel approach to enhance computational efficiency in MFL by adaptively allocating training resources for each modality encoder.
arXiv Detail & Related papers (2024-08-13T01:14:27Z) - Embracing Federated Learning: Enabling Weak Client Participation via Partial Model Training [21.89214794178211]
In Federated Learning (FL), clients may have weak devices that cannot train the full model or even hold it in their memory space.
We propose EmbracingFL, a general FL framework that allows all available clients to join the distributed training.
Our empirical study shows that EmbracingFL consistently achieves high accuracy as like all clients are strong, outperforming the state-of-the-art width reduction methods.
arXiv Detail & Related papers (2024-06-21T13:19:29Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
Federated Learning (FL) achieves great popularity in the Internet of Things (IoT)
We present FLrce, an efficient FL framework with a relationship-based client selection and early-stopping strategy.
Experiment results show that, compared with existing efficient FL frameworks, FLrce improves the computation and communication efficiency by at least 30% and 43% respectively.
arXiv Detail & Related papers (2023-10-15T10:13:44Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL GAMES, a game-theoretic framework for federated learning that learns causal features that are invariant across clients.
arXiv Detail & Related papers (2022-10-31T22:59:03Z) - A Fair Federated Learning Framework With Reinforcement Learning [23.675056844328]
Federated learning (FL) is a paradigm where many clients collaboratively train a model under the coordination of a central server.
We propose a reinforcement learning framework, called PG-FFL, which automatically learns a policy to assign aggregation weights to clients.
We conduct extensive experiments over diverse datasets to verify the effectiveness of our framework.
arXiv Detail & Related papers (2022-05-26T15:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.