Prioritizing Modalities: Flexible Importance Scheduling in Federated Multimodal Learning
- URL: http://arxiv.org/abs/2408.06549v1
- Date: Tue, 13 Aug 2024 01:14:27 GMT
- Title: Prioritizing Modalities: Flexible Importance Scheduling in Federated Multimodal Learning
- Authors: Jieming Bian, Lei Wang, Jie Xu,
- Abstract summary: Federated Learning (FL) is a distributed machine learning approach that enables devices to collaboratively train models without sharing their local data.
Applying FL to real-world data presents challenges, particularly as most existing FL research focuses on unimodal data.
We propose FlexMod, a novel approach to enhance computational efficiency in MFL by adaptively allocating training resources for each modality encoder.
- Score: 5.421492821020181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a distributed machine learning approach that enables devices to collaboratively train models without sharing their local data, ensuring user privacy and scalability. However, applying FL to real-world data presents challenges, particularly as most existing FL research focuses on unimodal data. Multimodal Federated Learning (MFL) has emerged to address these challenges, leveraging modality-specific encoder models to process diverse datasets. Current MFL methods often uniformly allocate computational frequencies across all modalities, which is inefficient for IoT devices with limited resources. In this paper, we propose FlexMod, a novel approach to enhance computational efficiency in MFL by adaptively allocating training resources for each modality encoder based on their importance and training requirements. We employ prototype learning to assess the quality of modality encoders, use Shapley values to quantify the importance of each modality, and adopt the Deep Deterministic Policy Gradient (DDPG) method from deep reinforcement learning to optimize the allocation of training resources. Our method prioritizes critical modalities, optimizing model performance and resource utilization. Experimental results on three real-world datasets demonstrate that our proposed method significantly improves the performance of MFL models.
Related papers
- Personalized Federated Learning Techniques: Empirical Analysis [2.9521571597754885]
We empirically evaluate ten prominent pFL techniques across various datasets and data splits, uncovering significant differences in their performance.
Our study emphasizes the critical role of communication efficiency in scaling pFL, demonstrating how it can significantly affect resource usage in real-world deployments.
arXiv Detail & Related papers (2024-09-10T18:16:28Z) - DynamicFL: Federated Learning with Dynamic Communication Resource Allocation [34.97472382870816]
Federated Learning (FL) is a collaborative machine learning framework that allows multiple users to train models utilizing their local data in a distributed manner.
We introduce DynamicFL, a new FL framework that investigates the trade-offs between global model performance and communication costs.
We show that DynamicFL surpasses current state-of-the-art methods with up to a 10% increase in model accuracy.
arXiv Detail & Related papers (2024-09-08T05:53:32Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning (FL) is a framework for on-device collaborative training of machine learning models.
First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client.
We study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions.
arXiv Detail & Related papers (2021-08-23T15:47:53Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.