論文の概要: Small Object Detection using Deep Learning
- arxiv url: http://arxiv.org/abs/2201.03243v1
- Date: Mon, 10 Jan 2022 09:58:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-11 20:05:24.925784
- Title: Small Object Detection using Deep Learning
- Title(参考訳): ディープラーニングを用いた小物体検出
- Authors: Aleena Ajaz, Ayesha Salar, Tauseef Jamal, Asif Ullah Khan
- Abstract要約: 提案システムは,高速物体検出モデル(YOLO)のフレーバーであるTiny YOLOv3(Tiny YOLOv3)を構築・使用した。
提案したアーキテクチャは、以前のYOLOバージョンに比べて大幅に性能が向上している。
- 参考スコア(独自算出の注目度): 0.28675177318965034
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Now a days, UAVs such as drones are greatly used for various purposes like
that of capturing and target detection from ariel imagery etc. Easy access of
these small ariel vehicles to public can cause serious security threats. For
instance, critical places may be monitored by spies blended in public using
drones. Study in hand proposes an improved and efficient Deep Learning based
autonomous system which can detect and track very small drones with great
precision. The proposed system consists of a custom deep learning model Tiny
YOLOv3, one of the flavors of very fast object detection model You Look Only
Once (YOLO) is built and used for detection. The object detection algorithm
will efficiently the detect the drones. The proposed architecture has shown
significantly better performance as compared to the previous YOLO version. The
improvement is observed in the terms of resource usage and time complexity. The
performance is measured using the metrics of recall and precision that are 93%
and 91% respectively.
- Abstract(参考訳): 現在では、ドローンなどのUAVは、アリエル画像からの検知やターゲット検出など、様々な目的に広く利用されている。
これらの小型のアリエル車両の公共への容易なアクセスは、重大なセキュリティ上の脅威を引き起こす可能性がある。
例えば、重要な場所はドローンを使って公共の場でミキシングされたスパイによって監視される。
研究は、非常に小さなドローンを高精度に検出し追跡できる、改良され効率的なディープラーニングベースの自律システムを提案する。
提案されているシステムは、カスタムのディープラーニングモデルであるtiny yolov3で構成されており、非常に高速なオブジェクト検出モデルのフレーバーの1つだ(yolo)。
オブジェクト検出アルゴリズムは、ドローンを効率的に検出する。
提案したアーキテクチャは、以前のYOLOバージョンに比べて大幅に性能が向上している。
この改善はリソースの使用量と時間の複雑さの観点から観察される。
性能は、それぞれ93%と91%のリコールと精度の測定値を用いて測定される。
関連論文リスト
- Real-Time Detection for Small UAVs: Combining YOLO and Multi-frame Motion Analysis [0.8971132850029493]
無人航空機(UAV)検出技術は、セキュリティリスクの軽減と、軍用および民間の双方のアプリケーションにおけるプライバシーの保護において重要な役割を担っている。
従来の検出手法は、長距離で非常に小さなピクセルを持つUAVターゲットを識別する上で重要な課題に直面している。
我々は,YOLO(You Only Look Once)オブジェクト検出と多フレームモーション検出を併用したGlobal-Local YOLO-Motion(GL-YOMO)検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-10T14:30:50Z) - SOAR: Self-supervision Optimized UAV Action Recognition with Efficient Object-Aware Pretraining [65.9024395309316]
無人航空機(UAV)が捉えた航空映像の自己監督型事前学習アルゴリズムについて紹介する。
我々は,UAVビデオの事前学習効率と下流行動認識性能を向上させるために,事前学習プロセスを通じて人体知識を取り入れた。
論文 参考訳(メタデータ) (2024-09-26T21:15:22Z) - DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection [1.2564343689544843]
ドローン検出は、画像の可視性や品質が好ましくないような、困難な物体検出タスクである。
私たちの仕事は、いくつかの改善を組み合わせることで、以前のアプローチを改善します。
提案された技術は、Drone vs. Bird Challengeで1位を獲得した。
論文 参考訳(メタデータ) (2024-06-30T20:49:56Z) - YOLO-FEDER FusionNet: A Novel Deep Learning Architecture for Drone Detection [4.281091463408282]
YOLO-FEDER FusionNetと呼ばれる新しいディープラーニングアーキテクチャを導入する。
従来のアプローチとは異なり、YOLO-FEDER FusionNetは、汎用オブジェクト検出手法とカモフラージュオブジェクト検出技術の特殊強度を組み合わせることで、ドローン検出能力を向上している。
論文 参考訳(メタデータ) (2024-06-17T15:25:31Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
本稿では,検出モデルに自己再構成機構を導入し,それと微小物体との強い相関関係を明らかにする。
具体的には、再構成画像と入力の差分マップを構築して、検出器の首の内側に再構成ヘッドを配置し、小さな物体に対して高い感度を示す。
さらに、小さな特徴表現をより明確にするために、差分マップガイド機能拡張(DGFE)モジュールを開発する。
論文 参考訳(メタデータ) (2024-05-18T12:22:26Z) - Reward Finetuning for Faster and More Accurate Unsupervised Object
Discovery [64.41455104593304]
Reinforcement Learning from Human Feedback (RLHF)は、機械学習モデルを改善し、それを人間の好みに合わせる。
本稿では,RL法と類似した手法を非教師対象発見に適用することを提案する。
私たちは、我々のアプローチがより正確であるだけでなく、訓練よりも桁違いに高速であることを示した。
論文 参考訳(メタデータ) (2023-10-29T17:03:12Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Lightweight Multi-Drone Detection and 3D-Localization via YOLO [1.284647943889634]
本稿では,実時間複数ドローン検出と3次元位置推定を行う手法を提案し,評価する。
我々は最先端の小さなYOLOv4オブジェクト検出アルゴリズムとステレオ三角測量を用いる。
我々のコンピュータビジョンアプローチは、計算コストのかかるステレオマッチングアルゴリズムを不要にする。
論文 参考訳(メタデータ) (2022-02-18T09:41:23Z) - YOLO-Z: Improving small object detection in YOLOv5 for autonomous
vehicles [5.765622319599904]
本研究は, YOLOv5物体検出器を改良して, 小型物体の検出性能を向上させる方法について検討した。
我々は, YOLO-Z'と命名し, 50%IOUで小さな物体を検出する場合に, 最大6.9%のmAP向上を示すモデルを提案する。
本研究の目的は、YOLOv5などの一般的な検出器を調整して特定のタスクに対処する可能性について、今後の研究を知らせることである。
論文 参考訳(メタデータ) (2021-12-22T11:03:43Z) - A dataset for multi-sensor drone detection [67.75999072448555]
近年,小型・遠隔操作無人航空機(UAV)の使用が増加している。
ドローン検出に関するほとんどの研究は、取得デバイスの種類、ドローンの種類、検出範囲、データセットを特定することに失敗している。
我々は、赤外線および可視ビデオとオーディオファイルを含むドローン検出のための注釈付きマルチセンサーデータベースにコントリビュートする。
論文 参考訳(メタデータ) (2021-11-02T20:52:03Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
本稿では,他の飛行ドローンからドローンを検知する問題に対処する。
ソースとターゲットドローンのエロティックな動き、小型、任意の形状、大きな強度、および閉塞は、この問題を非常に困難にします。
これに対処するため,地域提案に基づく手法ではなく,2段階のセグメンテーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-31T17:43:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。