論文の概要: Real-Time Detection for Small UAVs: Combining YOLO and Multi-frame Motion Analysis
- arxiv url: http://arxiv.org/abs/2411.02582v1
- Date: Thu, 10 Oct 2024 14:30:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 13:33:15.963692
- Title: Real-Time Detection for Small UAVs: Combining YOLO and Multi-frame Motion Analysis
- Title(参考訳): 小型UAVのリアルタイム検出:YOLOと多フレーム動作解析を組み合わせて
- Authors: Juanqin Liu, Leonardo Plotegher, Eloy Roura, Cristino de Souza Junior, Shaoming He,
- Abstract要約: 無人航空機(UAV)検出技術は、セキュリティリスクの軽減と、軍用および民間の双方のアプリケーションにおけるプライバシーの保護において重要な役割を担っている。
従来の検出手法は、長距離で非常に小さなピクセルを持つUAVターゲットを識別する上で重要な課題に直面している。
我々は,YOLO(You Only Look Once)オブジェクト検出と多フレームモーション検出を併用したGlobal-Local YOLO-Motion(GL-YOMO)検出アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.8971132850029493
- License:
- Abstract: Unmanned Aerial Vehicle (UAV) detection technology plays a critical role in mitigating security risks and safeguarding privacy in both military and civilian applications. However, traditional detection methods face significant challenges in identifying UAV targets with extremely small pixels at long distances. To address this issue, we propose the Global-Local YOLO-Motion (GL-YOMO) detection algorithm, which combines You Only Look Once (YOLO) object detection with multi-frame motion detection techniques, markedly enhancing the accuracy and stability of small UAV target detection. The YOLO detection algorithm is optimized through multi-scale feature fusion and attention mechanisms, while the integration of the Ghost module further improves efficiency. Additionally, a motion detection approach based on template matching is being developed to augment detection capabilities for minute UAV targets. The system utilizes a global-local collaborative detection strategy to achieve high precision and efficiency. Experimental results on a self-constructed fixed-wing UAV dataset demonstrate that the GL-YOMO algorithm significantly enhances detection accuracy and stability, underscoring its potential in UAV detection applications.
- Abstract(参考訳): 無人航空機(UAV)検出技術は、セキュリティリスクの軽減と、軍用および民間の双方のアプリケーションにおけるプライバシーの保護において重要な役割を担っている。
しかし、従来の検出手法は、長距離で非常に小さな画素を持つUAVターゲットを識別する上で重大な課題に直面している。
この問題に対処するために,You Only Look Once(YOLO)オブジェクト検出と多フレームモーション検出を併用したGL-YOMO検出アルゴリズムを提案し,小型UAV目標検出の精度と安定性を著しく向上させる。
YOLO検出アルゴリズムはマルチスケールの機能融合とアテンション機構によって最適化され、Ghostモジュールの統合により効率が向上する。
さらに, テンプレートマッチングに基づく動作検出手法を開発し, 微小UAV目標に対する検出能力を増強する。
このシステムは,高精度かつ効率的に,グローバルな協調検出戦略を利用する。
自己構築型固定翼UAVデータセットの実験結果から,GL-YOMOアルゴリズムは検出精度と安定性を著しく向上し,UAV検出への応用の可能性を示す。
関連論文リスト
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - YOLO-MST: Multiscale deep learning method for infrared small target detection based on super-resolution and YOLO [0.18641315013048293]
本稿では,画像超解像技術とマルチスケール観測を組み合わせた深層学習赤外線小目標検出手法を提案する。
この手法の2つの公開データセットであるSIRSTとIRISでのmAP@0.5検出率は、それぞれ96.4%と99.5%に達した。
論文 参考訳(メタデータ) (2024-12-27T18:43:56Z) - CLDA-YOLO: Visual Contrastive Learning Based Domain Adaptive YOLO Detector [10.419327930845922]
非教師付きドメイン適応(UDA)アルゴリズムは、ドメインシフトの条件下でオブジェクト検出器の性能を著しく向上させることができる。
視覚コントラスト学習(CLDA-YOLO)に基づく教師なし領域適応型YOLO検出器を提案する。
論文 参考訳(メタデータ) (2024-12-16T14:25:52Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
この研究は、複雑な分布と高次元分布をモデル化する能力で有名な物理インフォームドリアルNVPニューラルネットワークを活用する新しいアプローチを提案する。
実験には、セルフスーパービジョンによる事前トレーニング、マルチタスク学習、スタンドアロンのセルフ教師付きトレーニングなど、さまざまな構成が含まれている。
結果は、すべての設定で大幅にパフォーマンスが向上したことを示している。
論文 参考訳(メタデータ) (2024-07-03T07:19:41Z) - YOLO-FEDER FusionNet: A Novel Deep Learning Architecture for Drone Detection [4.281091463408282]
YOLO-FEDER FusionNetと呼ばれる新しいディープラーニングアーキテクチャを導入する。
従来のアプローチとは異なり、YOLO-FEDER FusionNetは、汎用オブジェクト検出手法とカモフラージュオブジェクト検出技術の特殊強度を組み合わせることで、ドローン検出能力を向上している。
論文 参考訳(メタデータ) (2024-06-17T15:25:31Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - Dense Learning based Semi-Supervised Object Detection [46.885301243656045]
半教師付きオブジェクト検出(SSOD)は、大量のラベルのないデータの助けを借りて、オブジェクト検出器の訓練と展開を容易にすることを目的としている。
本稿では,DenSe Learningに基づくアンカーフリーSSODアルゴリズムを提案する。
実験はMS-COCOとPASCAL-VOCで行われ,提案手法は新たな最先端SSOD性能を記録する。
論文 参考訳(メタデータ) (2022-04-15T02:31:02Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z) - Target Detection, Tracking and Avoidance System for Low-cost UAVs using
AI-Based Approaches [1.5836913530330785]
AIベースのアプローチを用いて,低コストUAV飛行制御装置を対象とした目標検出・追跡・回避システムを開発した。
提案したシステムは、同盟国であるUAVが敵の予想外のUAVを避けたり、網で追跡して身を守ることができる。
論文 参考訳(メタデータ) (2020-02-27T21:58:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。