Quantum information scrambling in a trapped-ion quantum simulator with
tunable range interactions
- URL: http://arxiv.org/abs/2001.02176v2
- Date: Mon, 31 Aug 2020 21:29:55 GMT
- Title: Quantum information scrambling in a trapped-ion quantum simulator with
tunable range interactions
- Authors: Manoj K. Joshi, Andreas Elben, Beno\^it Vermersch, Tiff Brydges,
Christine Maier, Peter Zoller, Rainer Blatt, Christian F. Roos
- Abstract summary: In ergodic many-body quantum systems, locally encoded quantum information becomes inaccessible to local measurements.
We present first experimental demonstrations of quantum information scrambling on a 10-qubit trapped-ion quantum simulator.
We also analyze the role of decoherence in our system by comparing our measurements to numerical simulations and by measuring R'enyi entanglement entropies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In ergodic many-body quantum systems, locally encoded quantum information
becomes, in the course of time evolution, inaccessible to local measurements.
This concept of "scrambling" is currently of intense research interest,
entailing a deep understanding of many-body dynamics such as the processes of
chaos and thermalization. Here, we present first experimental demonstrations of
quantum information scrambling on a 10-qubit trapped-ion quantum simulator
representing a tunable long-range interacting spin system, by estimating
out-of-time ordered correlators (OTOCs) through randomized measurements. We
also analyze the role of decoherence in our system by comparing our
measurements to numerical simulations and by measuring R\'enyi entanglement
entropies.
Related papers
- Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Thermodynamics of quantum trajectories on a quantum computer [0.0]
Open-system dynamics are simulated on a quantum computer by coupling a system of interest to ancilla.
We show how to control the dynamics of the open system in order to enhance the probability of quantum trajectories with desired properties.
arXiv Detail & Related papers (2023-01-17T19:00:03Z) - Measuring Quantum Entanglement from Local Information by Machine
Learning [10.161394383081145]
Entanglement is a key property in the development of quantum technologies.
We present a neural network-assisted protocol for measuring entanglement in equilibrium and non-equilibrium states of local Hamiltonians.
arXiv Detail & Related papers (2022-09-18T08:15:49Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Analyzing non-equilibrium quantum states through snapshots with
artificial neural networks [0.0]
Current quantum simulation experiments are starting to explore non-equilibrium many-body dynamics in previously inaccessible regimes.
Using machine learning techniques, we investigate the dynamics and in particular the thermalization behavior of an interacting quantum system.
A neural network is trained to distinguish non-equilibrium from thermal equilibrium data, and the network performance serves as a probe for the thermalization behavior of the system.
arXiv Detail & Related papers (2020-12-21T18:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.