論文の概要: Multimodal Representations Learning Based on Mutual Information
Maximization and Minimization and Identity Embedding for Multimodal Sentiment
Analysis
- arxiv url: http://arxiv.org/abs/2201.03969v1
- Date: Mon, 10 Jan 2022 01:41:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-12 13:26:24.455978
- Title: Multimodal Representations Learning Based on Mutual Information
Maximization and Minimization and Identity Embedding for Multimodal Sentiment
Analysis
- Title(参考訳): マルチモーダル感性分析のための相互情報最大化と最小化とアイデンティティ埋め込みに基づくマルチモーダル表現学習
- Authors: Jiahao Zheng, Sen Zhang, Xiaoping Wang, Zhigang Zeng
- Abstract要約: 相互情報の最大化とアイデンティティの埋め込みに基づくマルチモーダル表現モデルを提案する。
2つの公開データセットの実験結果から,提案手法の有効性が示された。
- 参考スコア(独自算出の注目度): 33.73730195500633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal sentiment analysis (MSA) is a fundamental complex research problem
due to the heterogeneity gap between different modalities and the ambiguity of
human emotional expression. Although there have been many successful attempts
to construct multimodal representations for MSA, there are still two challenges
to be addressed: 1) A more robust multimodal representation needs to be
constructed to bridge the heterogeneity gap and cope with the complex
multimodal interactions, and 2) the contextual dynamics must be modeled
effectively throughout the information flow. In this work, we propose a
multimodal representation model based on Mutual information Maximization and
Minimization and Identity Embedding (MMMIE). We combine mutual information
maximization between modal pairs, and mutual information minimization between
input data and corresponding features to mine the modal-invariant and
task-related information. Furthermore, Identity Embedding is proposed to prompt
the downstream network to perceive the contextual information. Experimental
results on two public datasets demonstrate the effectiveness of the proposed
model.
- Abstract(参考訳): マルチモーダル感情分析(Multimodal sentiment analysis、MSA)は、異なるモーダル性と人間の感情表現のあいまいさの間の不均一性ギャップに起因する基礎的な複雑な研究課題である。
MSAのためのマルチモーダル表現の構築には多くの試みがあったが、解決すべき課題は2つある。
1)より堅牢なマルチモーダル表現は、異質性ギャップを橋渡し、複雑なマルチモーダル相互作用に対処するために構築する必要がある。
2) 文脈ダイナミクスは情報フロー全体を通して効果的にモデル化されなければならない。
本研究では,相互情報最大化と最小化とアイデンティティ埋め込み(mmmie)に基づくマルチモーダル表現モデルを提案する。
モーダルペア間の相互情報最大化と入力データと対応する特徴間の相互情報最小化を組み合わせることにより、モーダル不変情報とタスク関連情報をマイニングする。
さらに、下流ネットワークが文脈情報を認識するよう促すために、アイデンティティ埋め込みを提案する。
2つの公開データセットにおける実験結果は,提案モデルの有効性を示す。
関連論文リスト
- Toward Robust Incomplete Multimodal Sentiment Analysis via Hierarchical Representation Learning [21.127950337002776]
マルチモーダル・センティメント・アナリティクス(MSA)は、複数のモーダルを通して人間の感情を理解し、認識することを目的とした重要な研究分野である。
本稿では,不確実なモダリティの下でのタスクのための階層表現学習フレームワーク(HRLF)を提案する。
HRLFは、不確実なモダリティ欠失例において、MSA性能を著しく改善することを示した。
論文 参考訳(メタデータ) (2024-11-05T04:04:41Z) - Leveraging Entity Information for Cross-Modality Correlation Learning: The Entity-Guided Multimodal Summarization [49.08348604716746]
Multimodal Summarization with Multimodal Output (MSMO) は、テキストと関連する画像の両方を統合するマルチモーダル要約を作成することを目的としている。
本稿では,Entity-Guided Multimodal Summarization Model (EGMS)を提案する。
我々のモデルは,BART上に構築され,共有重み付きデュアルマルチモーダルエンコーダを用いて,テキスト画像とエンティティ画像情報を並列に処理する。
論文 参考訳(メタデータ) (2024-08-06T12:45:56Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - MESED: A Multi-modal Entity Set Expansion Dataset with Fine-grained
Semantic Classes and Hard Negative Entities [25.059177235004952]
本稿では,マルチモーダル・エンティティ・セット・エクスパンジョン(MESE)を提案する。
4つのマルチモーダル事前学習タスクで事前学習を行う強力なマルチモーダルモデルであるMultiExpanを提案する。
MESEDデータセットは、大規模かつ精巧な手動キャリブレーションを備えたESEのための最初のマルチモーダルデータセットである。
論文 参考訳(メタデータ) (2023-07-27T14:09:59Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
本稿では,入力モーダル性と出力タスクを関連付けた冗長性,特異性,シナジーの度合いを定量化する情報理論手法を提案する。
PID推定を検証するために、PIDが知られている合成データセットと大規模マルチモーダルベンチマークの両方で広範な実験を行う。
本研究では,(1)マルチモーダルデータセット内の相互作用の定量化,(2)マルチモーダルモデルで捉えた相互作用の定量化,(3)モデル選択の原理的アプローチ,(4)実世界のケーススタディの3つにその有用性を示す。
論文 参考訳(メタデータ) (2023-02-23T18:59:05Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
マルチモーダルなエンティティアライメントは、2つの異なるマルチモーダルな知識グラフ間で等価なエンティティを識別することを目的としている。
マルチモーダルコントラスト学習に基づくエンティティアライメントモデルであるMCLEAを提案する。
特に、MCLEAはまず複数のモダリティから複数の個別表現を学習し、その後、モダリティ内およびモダリティ間相互作用を共同でモデル化するコントラスト学習を行う。
論文 参考訳(メタデータ) (2022-09-02T08:59:57Z) - Efficient Multimodal Transformer with Dual-Level Feature Restoration for
Robust Multimodal Sentiment Analysis [47.29528724322795]
マルチモーダルセンシング分析(MSA)が近年注目を集めている。
著しい進歩にもかかわらず、堅牢なMSAへの道にはまだ2つの大きな課題がある。
デュアルレベル特徴回復 (EMT-DLFR) を用いた高効率マルチモーダル変圧器 (Efficient Multimodal Transformer) を提案する。
論文 参考訳(メタデータ) (2022-08-16T08:02:30Z) - Improving Multimodal fusion via Mutual Dependency Maximisation [5.73995120847626]
マルチモーダル・感情分析は研究のトレンドとなっている分野であり、マルチモーダル・フュージョンは最も活発なトピックの1つである。
本研究では,未探索の罰則を調査し,モダリティ間の依存性を測定するための新たな目的セットを提案する。
我々は、我々の新しい罰則が様々な最先端モデルに対して一貫した改善(正確性で最大4.3ドル)をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-31T06:26:26Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z) - MISA: Modality-Invariant and -Specific Representations for Multimodal
Sentiment Analysis [48.776247141839875]
本稿では,2つの異なる部分空間に各モダリティを投影する新しいフレームワーク MISA を提案する。
最初の部分空間はモダリティ不変(modality-invariant)であり、モダリティにまたがる表現はその共通点を学び、モダリティギャップを減少させる。
一般的な感情分析ベンチマークであるMOSIとMOSEIの実験は、最先端モデルよりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2020-05-07T15:13:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。