論文の概要: Toward Robust Incomplete Multimodal Sentiment Analysis via Hierarchical Representation Learning
- arxiv url: http://arxiv.org/abs/2411.02793v1
- Date: Tue, 05 Nov 2024 04:04:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:31.838798
- Title: Toward Robust Incomplete Multimodal Sentiment Analysis via Hierarchical Representation Learning
- Title(参考訳): 階層的表現学習によるロバスト不完全マルチモーダル感性分析に向けて
- Authors: Mingcheng Li, Dingkang Yang, Yang Liu, Shunli Wang, Jiawei Chen, Shuaibing Wang, Jinjie Wei, Yue Jiang, Qingyao Xu, Xiaolu Hou, Mingyang Sun, Ziyun Qian, Dongliang Kou, Lihua Zhang,
- Abstract要約: マルチモーダル・センティメント・アナリティクス(MSA)は、複数のモーダルを通して人間の感情を理解し、認識することを目的とした重要な研究分野である。
本稿では,不確実なモダリティの下でのタスクのための階層表現学習フレームワーク(HRLF)を提案する。
HRLFは、不確実なモダリティ欠失例において、MSA性能を著しく改善することを示した。
- 参考スコア(独自算出の注目度): 21.127950337002776
- License:
- Abstract: Multimodal Sentiment Analysis (MSA) is an important research area that aims to understand and recognize human sentiment through multiple modalities. The complementary information provided by multimodal fusion promotes better sentiment analysis compared to utilizing only a single modality. Nevertheless, in real-world applications, many unavoidable factors may lead to situations of uncertain modality missing, thus hindering the effectiveness of multimodal modeling and degrading the model's performance. To this end, we propose a Hierarchical Representation Learning Framework (HRLF) for the MSA task under uncertain missing modalities. Specifically, we propose a fine-grained representation factorization module that sufficiently extracts valuable sentiment information by factorizing modality into sentiment-relevant and modality-specific representations through crossmodal translation and sentiment semantic reconstruction. Moreover, a hierarchical mutual information maximization mechanism is introduced to incrementally maximize the mutual information between multi-scale representations to align and reconstruct the high-level semantics in the representations. Ultimately, we propose a hierarchical adversarial learning mechanism that further aligns and adapts the latent distribution of sentiment-relevant representations to produce robust joint multimodal representations. Comprehensive experiments on three datasets demonstrate that HRLF significantly improves MSA performance under uncertain modality missing cases.
- Abstract(参考訳): マルチモーダル・センティメント・アナリティクス(MSA)は、複数のモーダルを通して人間の感情を理解し、認識することを目的とした重要な研究分野である。
多モード融合によって提供される相補的な情報は、単一のモダリティのみを活用するよりも、より良い感情分析を促進する。
しかし、現実の応用においては、多くの避けられない要因が不確実なモダリティの欠如を招き、マルチモーダルモデリングの有効性を妨げ、モデルの性能を低下させる可能性がある。
そこで本稿では,MSAタスクのための階層表現学習フレームワーク(HRLF)を提案する。
具体的には,モダリティをモダリティ関連およびモダリティ特化表現に分解し,意味的翻訳と意味的再構成により,感情情報を十分に抽出する表現分解モジュールを提案する。
さらに、階層的相互情報最大化機構を導入し、多スケール表現間の相互情報を漸進的に最大化し、表現の高レベルな意味を調整・再構築する。
最終的には、感情関連表現の潜在分布をさらに整合させ、適応させ、堅牢な関節マルチモーダル表現を生成する階層的対角学習機構を提案する。
3つのデータセットの総合的な実験により、HRLFは不確実なモダリティ欠失の場合において、MSA性能を著しく改善することが示された。
関連論文リスト
- MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
我々は,新しいマルチモーダル命令データ進化フレームワークであるMMEvolを提案する。
MMEvolは、きめ細かい知覚、認知的推論、相互作用の進化の洗練された組み合わせによって、データ品質を反復的に改善する。
提案手法は,9つのタスクにおいて,最先端モデルに比べて有意に少ない精度でSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-09-09T17:44:00Z) - Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
我々は、VidQAベンチマークとデータセットのバイアスを特定するために、MIS(Modality importance score)を導入する。
また,最新のMLLMを用いてモダリティの重要度を推定する手法を提案する。
以上の結果から,既存のデータセットでは,モダリティの不均衡による情報統合が効果的に行われていないことが示唆された。
論文 参考訳(メタデータ) (2024-08-22T23:32:42Z) - Correlation-Decoupled Knowledge Distillation for Multimodal Sentiment Analysis with Incomplete Modalities [16.69453837626083]
本稿では,Multimodal Sentiment Analysis (MSA)タスクのための相関分離型知識蒸留(CorrKD)フレームワークを提案する。
本稿では, クロスサンプル相関を含む包括的知識を伝達し, 欠落した意味論を再構築するサンプルレベルのコントラスト蒸留機構を提案する。
我々は,学生ネットワークの感情決定境界を最適化するために,応答不整合蒸留方式を設計する。
論文 参考訳(メタデータ) (2024-04-25T09:35:09Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Learning Language-guided Adaptive Hyper-modality Representation for
Multimodal Sentiment Analysis [22.012103941836838]
適応型言語誘導型マルチモーダルトランス(ALMT)を提案する。
ALMTにはAdaptive Hyper-modality Learning (AHL)モジュールが組み込まれており、無関係/複雑圧縮表現を学習する。
ALMTは、いくつかの一般的なデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-09T15:43:07Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
本研究は,対象物,文,画像全体に基づいて,テキストおよび視覚的証拠を検索することを提案する。
我々は,オブジェクトレベル,画像レベル,文レベル情報を合成し,同一性と異なるモダリティ間の推論を改善する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-05-25T15:26:13Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
相関情報ボトルネック (CIB) は圧縮と表現の冗長性のトレードオフを求める。
マルチモーダル入力と表現の相互情報に対して,理論上界を厳密に導出する。
論文 参考訳(メタデータ) (2022-09-14T22:04:10Z) - Multimodal Representations Learning Based on Mutual Information
Maximization and Minimization and Identity Embedding for Multimodal Sentiment
Analysis [33.73730195500633]
相互情報の最大化とアイデンティティの埋め込みに基づくマルチモーダル表現モデルを提案する。
2つの公開データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-01-10T01:41:39Z) - How to Sense the World: Leveraging Hierarchy in Multimodal Perception
for Robust Reinforcement Learning Agents [9.840104333194663]
我々は表現モデルの設計における階層性を主張し、新しいマルチモーダル表現モデルであるMUSEに貢献する。
MUSEは,アタリゲームにおけるマルチモーダル観察を備えた深層強化学習エージェントの感覚表現モデルである。
我々は、強化学習エージェントの異なる設計に関する比較研究を行い、MUSEは、エージェントが最小性能の損失で不完全な知覚経験の下でタスクを実行できることを示した。
論文 参考訳(メタデータ) (2021-10-07T16:35:23Z) - MISA: Modality-Invariant and -Specific Representations for Multimodal
Sentiment Analysis [48.776247141839875]
本稿では,2つの異なる部分空間に各モダリティを投影する新しいフレームワーク MISA を提案する。
最初の部分空間はモダリティ不変(modality-invariant)であり、モダリティにまたがる表現はその共通点を学び、モダリティギャップを減少させる。
一般的な感情分析ベンチマークであるMOSIとMOSEIの実験は、最先端モデルよりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2020-05-07T15:13:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。