論文の概要: Topic Modeling on Podcast Short-Text Metadata
- arxiv url: http://arxiv.org/abs/2201.04419v1
- Date: Wed, 12 Jan 2022 11:07:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-13 19:18:40.409156
- Title: Topic Modeling on Podcast Short-Text Metadata
- Title(参考訳): ポッドキャスト短文メタデータのトピックモデリング
- Authors: Francisco B. Valero and Marion Baranes and Elena V. Epure
- Abstract要約: 短いテキストのモデリング技術を用いて,ポッドキャストのメタデータやタイトル,記述から関連トピックを発見できる可能性を評価する。
非負行列因子化モデリングフレームワークにおいて、しばしばポッドキャストメタデータに現れる名前付きエンティティ(NE)に対する新しい戦略を提案する。
SpotifyとiTunesとDeezerの既存の2つのデータセットに対する実験により、提案したドキュメント表現であるNEiCEがベースラインの一貫性を改善していることが示された。
- 参考スコア(独自算出の注目度): 0.9539495585692009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Podcasts have emerged as a massively consumed online content, notably due to
wider accessibility of production means and scaled distribution through large
streaming platforms. Categorization systems and information access technologies
typically use topics as the primary way to organize or navigate podcast
collections. However, annotating podcasts with topics is still quite
problematic because the assigned editorial genres are broad, heterogeneous or
misleading, or because of data challenges (e.g. short metadata text, noisy
transcripts). Here, we assess the feasibility to discover relevant topics from
podcast metadata, titles and descriptions, using topic modeling techniques for
short text. We also propose a new strategy to leverage named entities (NEs),
often present in podcast metadata, in a Non-negative Matrix Factorization (NMF)
topic modeling framework. Our experiments on two existing datasets from Spotify
and iTunes and Deezer, a new dataset from an online service providing a catalog
of podcasts, show that our proposed document representation, NEiCE, leads to
improved topic coherence over the baselines. We release the code for
experimental reproducibility of the results.
- Abstract(参考訳): Podcastは、大規模なストリーミングプラットフォームを通じて、プロダクション手段の幅広いアクセシビリティと大規模配信のために、非常に消費されているオンラインコンテンツとして登場した。
分類システムと情報アクセス技術は、通常、ポッドキャストコレクションを整理またはナビゲートする主要な方法としてトピックを使用する。
しかし、割り当てられた編集ジャンルは広範で異種または誤解を招くか、データ難易度(例えば、短いメタデータテキスト、騒がしい書き起こし)があるため、ポッドキャストにトピックを付けることは依然として非常に問題となる。
本稿では,ポッドキャストのメタデータやタイトル,説明から関連するトピックを,短いテキストのトピックモデリング手法を用いて発見する可能性を評価する。
また,非負行列分解(nmf)トピックモデリングフレームワークにおいて,ポッドキャストメタデータにしばしば現れる名前付きエンティティ(nes)を活用する新たな戦略を提案する。
SpotifyとiTunesの既存の2つのデータセットと、ポッドキャストのカタログを提供するオンラインサービスからの新たなデータセットであるDeezerに関する実験は、提案したドキュメント表現であるNEiCEが、ベースラインよりもトピックコヒーレンスが改善されていることを示しています。
実験結果の再現性に関するコードをリリースする。
関連論文リスト
- Mapping the Podcast Ecosystem with the Structured Podcast Research Corpus [23.70786221902932]
私たちは2020年5月から6月にかけて、公開RSSフィードを通じて利用可能な110万以上のポッドキャストの大規模なデータセットを紹介します。
このデータはテキストに限らず、オーディオ機能や370Kエピソードのサブセットのスピーカー・ターンも含んでいる。
このデータを用いて、このポピュラーなインパクトのある媒体の内容、構造、応答性に関する基礎的な調査を行う。
論文 参考訳(メタデータ) (2024-11-12T15:56:48Z) - TopicGPT: A Prompt-based Topic Modeling Framework [77.72072691307811]
TopicGPTは,大規模言語モデルを用いてテキストコレクション内の潜在トピックを明らかにするプロンプトベースのフレームワークである。
競合する手法と比較して、人間の分類とよく一致したトピックを生成する。
そのトピックもまた解釈可能であり、自然言語ラベルと関連する自由形式の記述を含むトピックを好んで、曖昧な言葉の袋を除いた。
論文 参考訳(メタデータ) (2023-11-02T17:57:10Z) - Topic Taxonomy Expansion via Hierarchy-Aware Topic Phrase Generation [58.3921103230647]
TopicExpanというトピック分類拡張のための新しいフレームワークを提案する。
TopicExpanは、新しいトピックに属するトピック関連用語を直接生成する。
2つの実世界のテキストコーパスの実験結果から、TopicExpanは出力の質という点で他のベースライン手法よりも優れていた。
論文 参考訳(メタデータ) (2022-10-18T22:38:49Z) - Identifying Introductions in Podcast Episodes from Automatically
Generated Transcripts [0.0]
400以上のポッドキャストエピソードの完全な書き起こしのデータセットを新たに構築する。
これらの紹介には、エピソードのトピック、ホスト、ゲストに関する情報が含まれている。
我々は、事前訓練されたBERTと異なる拡張戦略に基づいて、3つのTransformerモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-14T00:34:51Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Unsupervised Summarization for Chat Logs with Topic-Oriented Ranking and
Context-Aware Auto-Encoders [59.038157066874255]
本稿では,手動ラベル付きデータを用いずにチャット要約を行うrankaeという新しいフレームワークを提案する。
RankAEは、中心性と多様性に応じてトピックの発話を同時に選択するトピック指向のランキング戦略で構成されています。
消音自動エンコーダは、選択された発話に基づいて簡潔でコンテキスト情報に基づいた要約を生成するように設計されています。
論文 参考訳(メタデータ) (2020-12-14T07:31:17Z) - A Two-Phase Approach for Abstractive Podcast Summarization [18.35061145103997]
ポッドキャストの要約は他のデータフォーマットの要約とは異なる。
文選択とSeq2seq学習という2段階の手法を提案する。
提案手法は,ROUGEに基づく測定と人的評価の両面で有望な結果をもたらす。
論文 参考訳(メタデータ) (2020-11-16T21:31:28Z) - PodSumm -- Podcast Audio Summarization [0.0]
テキストドメインからのガイダンスを用いて,ポッドキャストの要約を自動的に作成する手法を提案する。
このタスクにはデータセットが不足しているため、内部データセットをキュレートし、データ拡張の効果的なスキームを見つけ、アノテータから要約を集めるためのプロトコルを設計する。
本手法は, ROUGE-F(1/2/L) スコア0.63/0.53/0.63をデータセット上で達成する。
論文 参考訳(メタデータ) (2020-09-22T04:49:33Z) - A Baseline Analysis for Podcast Abstractive Summarization [18.35061145103997]
本稿では,Spotify Podcastデータセットを用いたポッドキャスト要約のベースライン解析について述べる。
研究者が現在の最先端の事前訓練モデルを理解するのを助け、より良いモデルを作るための基盤を構築することを目的としている。
論文 参考訳(メタデータ) (2020-08-24T18:38:42Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
本稿では,BERTSumモデルの最初の対話型言語への応用について述べる。
我々は多種多様な話題にまたがるナレーションビデオの抽象要約を生成する。
我々は、これをインテリジェントな仮想アシスタントの機能として統合し、要求に応じて文字と音声の両方の指導内容の要約を可能にすることを想定する。
論文 参考訳(メタデータ) (2020-08-21T20:59:34Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
トピック間一般化の能力をモデル化するためのトピック適応型ストーリーテラを提案する。
また,アトピー内導出能力のモデル化を目的とした符号化手法の試作も提案する。
実験結果から,トピック適応とプロトタイプ符号化構造が相互に利益をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-08-11T03:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。