論文の概要: Smoothness and continuity of cost functionals for ECG mismatch
computation
- arxiv url: http://arxiv.org/abs/2201.04487v1
- Date: Wed, 12 Jan 2022 14:16:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-13 15:17:35.205862
- Title: Smoothness and continuity of cost functionals for ECG mismatch
computation
- Title(参考訳): ECGミスマッチ計算におけるコスト関数の滑らか性と連続性
- Authors: Thomas Grandits and Simone Pezzuto and Gernot Plank
- Abstract要約: 逆電気生理学的モデリング、すなわち、ECGのような電気的測定からモデルを作成する場合、シミュレーションされたECGの滑らかさについて、より詳しく調べる必要がある。
我々は、単純化された左心室モデルのテストベンチを作成し、スムーズなコスト汎関数による効率的な逆モデリングのための最も重要な要因を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of cardiac electrophysiology tries to abstract, describe and
finally model the electrical characteristics of a heartbeat. With recent
advances in cardiac electrophysiology, models have become more powerful and
descriptive as ever. However, to advance to the field of inverse
electrophysiological modeling, i.e. creating models from electrical
measurements such as the ECG, the less investigated field of smoothness of the
simulated ECGs w.r.t. model parameters need to be further explored. The present
paper discusses smoothness in terms of the whole pipeline which describes how
from physiological parameters, we arrive at the simulated ECG. Employing such a
pipeline, we create a test-bench of a simplified idealized left ventricle model
and demonstrate the most important factors for efficient inverse modeling
through smooth cost functionals. Such knowledge will be important for designing
and creating inverse models in future optimization and machine learning
methods.
- Abstract(参考訳): 心臓電気生理学の分野は、心拍の電気的特性を抽象化し、記述し、最終的にモデル化しようとする。
近年の心電気生理学の進歩により、モデルはかつてないほど強力で記述的になっている。
しかし、逆電気生理学的モデリングの分野、すなわち心電図のような電気的測定からモデルを作成するためには、シミュレーションされた心電図w.r.t.モデルパラメータの滑らかさのあまり研究されていない分野を探求する必要がある。
本稿では,生理的パラメータからシミュレートされたECGにどのように着くかを記述するパイプライン全体の滑らかさについて論じる。
このようなパイプラインを用いることで、簡易な理想化左室モデルのテストベンチを作成し、滑らかなコスト汎関数による効率的な逆モデリングのための最も重要な要素を実証する。
このような知識は、将来の最適化と機械学習手法における逆モデルの設計と作成において重要である。
関連論文リスト
- Ordinary Differential Equations for Enhanced 12-Lead ECG Generation [23.68913350398035]
通常の微分方程式(ODE)を用いて12リードのECGデータを生成することの忠実度を高める革新的な手法を提案する。
このアプローチは、生成モデルの最適化プロセスに直接心臓力学を表現するODEのシステムを統合する。
人工心電図データを用いて心電図解析を行い, 心電図データに心電図を組み込むことにより, 心電図データに基づいて心電図を訓練した心電図の精度が有意に向上することが確認された。
論文 参考訳(メタデータ) (2024-09-26T13:35:42Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - Transforming ECG Diagnosis:An In-depth Review of Transformer-based
DeepLearning Models in Cardiovascular Disease Detection [0.0]
本稿では,ECG分類に適用可能なトランスフォーマーアーキテクチャの詳細なレビューを行う。
これらのモデルは、他のモデルが見落としているかもしれないECG信号の複雑な時間的関係を捉えている。
このレビューは、研究者や実践者にとって貴重なリソースであり、ECG解釈におけるこの革新的な応用に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-06-02T03:23:16Z) - HeartBEiT: Vision Transformer for Electrocardiogram Data Improves
Diagnostic Performance at Low Sample Sizes [28.88454028731653]
心電図波形解析のための第1の視覚ベーストランスモデルHeartBEiTを開発した。
その結果,HeartBEiTは,他のモデルに比べて試料サイズが小さく,高い性能を示した。
また、HeartBEiTは、EKGと標準CNNの生物学的関連領域を強調することにより、診断の説明可能性を向上させることを示した。
論文 参考訳(メタデータ) (2022-12-13T16:39:21Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Fast Posterior Estimation of Cardiac Electrophysiological Model
Parameters via Bayesian Active Learning [6.413608840146938]
心臓モデルパラメータの後方確率密度関数を近似するベイズ能動学習法を提案する。
正規獲得関数を用いたベイズ能動的学習と比較して, 後方pdfの近似精度が向上したことを示す。
論文 参考訳(メタデータ) (2021-10-13T16:43:34Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。