論文の概要: Quasi-Framelets: Robust Graph Neural Networks via Adaptive Framelet Convolution
- arxiv url: http://arxiv.org/abs/2201.04728v2
- Date: Mon, 29 Jul 2024 12:54:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 01:36:13.100027
- Title: Quasi-Framelets: Robust Graph Neural Networks via Adaptive Framelet Convolution
- Title(参考訳): 準フレームレット:適応フレームレット畳み込みによるロバストグラフニューラルネットワーク
- Authors: Mengxi Yang, Dai Shi, Xuebin Zheng, Jie Yin, Junbin Gao,
- Abstract要約: スペクトルグラフニューラルネットワーク(GNN)のためのマルチスケールフレームレット畳み込みを提案する。
提案設計は、不要なスペクトル情報をフィルタリングし、ノイズグラフ信号の悪影響を著しく低減する。
ノイズの多いデータや敵攻撃に対する優れたレジリエンスを示しており、現実世界のグラフアプリケーションに対する堅牢なソリューションとしての可能性を強調している。
- 参考スコア(独自算出の注目度): 28.474359021962346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to provide a novel design of a multiscale framelet convolution for spectral graph neural networks (GNNs). While current spectral methods excel in various graph learning tasks, they often lack the flexibility to adapt to noisy, incomplete, or perturbed graph signals, making them fragile in such conditions. Our newly proposed framelet convolution addresses these limitations by decomposing graph data into low-pass and high-pass spectra through a finely-tuned multiscale approach. Our approach directly designs filtering functions within the spectral domain, allowing for precise control over the spectral components. The proposed design excels in filtering out unwanted spectral information and significantly reduces the adverse effects of noisy graph signals. Our approach not only enhances the robustness of GNNs but also preserves crucial graph features and structures. Through extensive experiments on diverse, real-world graph datasets, we demonstrate that our framelet convolution achieves superior performance in node classification tasks. It exhibits remarkable resilience to noisy data and adversarial attacks, highlighting its potential as a robust solution for real-world graph applications. This advancement opens new avenues for more adaptive and reliable spectral GNN architectures.
- Abstract(参考訳): 本稿では,スペクトルグラフニューラルネットワーク(GNN)のためのマルチスケールフレームレット畳み込みの設計を提案する。
現在のスペクトル法は様々なグラフ学習タスクで優れているが、ノイズ、不完全、あるいは摂動グラフ信号に適応する柔軟性に欠けており、そのような条件下では脆弱である。
新たに提案したフレームレット畳み込みは,グラフデータを細調整によるマルチスケールアプローチにより低域と高域のスペクトルに分解することで,これらの制約に対処する。
提案手法はスペクトル領域内のフィルタ関数を直接設計し,スペクトル成分の精密制御を可能にする。
提案設計は、不要なスペクトル情報をフィルタリングし、ノイズグラフ信号の悪影響を著しく低減する。
我々のアプローチは、GNNの堅牢性を高めるだけでなく、重要なグラフの特徴や構造も維持する。
多様な実世界のグラフデータセットに関する広範な実験を通じて、我々のフレームレット畳み込みがノード分類タスクにおいて優れた性能を達成することを実証する。
ノイズの多いデータや敵攻撃に対する優れたレジリエンスを示しており、現実世界のグラフアプリケーションに対する堅牢なソリューションとしての可能性を強調している。
この進歩は、より適応的で信頼性の高いGNNアーキテクチャのための新しい道を開く。
関連論文リスト
- GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet)は、任意のグラフスペクトルフィルタを設計するためのシンプルで効果的なスキームを提供する理論的なサポートを持つ、新しいグラフニューラルネットワークである。
我々の知る限り、我々の研究はグラフGNNスペクトルフィルタの設計にSSMを使った最初のものである。
9つの公開ベンチマークでの大規模な実験により、GrassNetは現実世界のグラフモデリングタスクにおいて優れたパフォーマンスを達成することが明らかになった。
論文 参考訳(メタデータ) (2024-08-16T07:33:58Z) - Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
畳み込みニューラルネットワーク(CNN)は、ハイパースペクトル画像(HSI)分類において顕著な性能を達成した。
本稿では、2つの重要なモジュールからなるスペクトルグラフ推論ネットワーク(SGR)学習フレームワークを提案する。
2つのHSIデータセットの実験により、提案したアーキテクチャが分類精度を大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2024-07-02T20:29:23Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
従来の知恵は、スペクトル畳み込みネットワークは無向グラフ上にしか展開できないと規定している。
ここでは、このグラフフーリエ変換への伝統的な依存が超フルであることを示す。
本稿では,新たに開発されたフィルタの周波数応答解釈を行い,フィルタ表現に使用するベースの影響を調査し,ネットワークを基盤とする特性演算子との相互作用について議論する。
論文 参考訳(メタデータ) (2023-10-03T17:42:09Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
グラフニューラルネットワーク(GNN)の性能向上のための新しいフレームワークであるグラディエントゲーティング(G$2$)を提案する。
我々のフレームワークは,GNN層の出力を,基盤となるグラフのノード間でのメッセージパッシング情報のマルチレートフローのメカニズムでゲーティングすることに基づいている。
論文 参考訳(メタデータ) (2022-10-02T13:19:48Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
グラフ表現学習(GRL)は、現代のグラフデータマイニングおよび学習タスクに欠かせないものとなっている。
グラフニューラルネットワーク(GNN)は最先端のGRLアーキテクチャで使用されているが、過度なスムース化に悩まされていることが示されている。
本稿では,グラフの構造を考慮に入れたスペクトル法であるPointSpectrumを提案する。
論文 参考訳(メタデータ) (2021-09-06T10:59:11Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - How Framelets Enhance Graph Neural Networks [27.540282741523253]
本稿では,フレームレット変換に基づくグラフニューラルネットワークの組み立て手法を提案する。
本稿では,フレームレット畳み込みのための新しいアクティベーションとして,異なるスケールで高周波情報をしきい値として縮小を提案する。
論文 参考訳(メタデータ) (2021-02-13T19:19:19Z) - Bridging the Gap Between Spectral and Spatial Domains in Graph Neural
Networks [8.563354084119062]
空間領域やスペクトル領域におけるグラフ畳み込み過程の等価性を示す。
提案フレームワークは、空間領域に適用しながら、独自の周波数プロファイルを持つスペクトル領域の新しい畳み込みを設計するために使用される。
論文 参考訳(メタデータ) (2020-03-26T01:49:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。