論文の概要: GrassNet: State Space Model Meets Graph Neural Network
- arxiv url: http://arxiv.org/abs/2408.08583v1
- Date: Fri, 16 Aug 2024 07:33:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:17:46.689914
- Title: GrassNet: State Space Model Meets Graph Neural Network
- Title(参考訳): GrassNet: 状態空間モデルとグラフニューラルネットワーク
- Authors: Gongpei Zhao, Tao Wang, Yi Jin, Congyan Lang, Yidong Li, Haibin Ling,
- Abstract要約: Graph State Space Network (GrassNet)は、任意のグラフスペクトルフィルタを設計するためのシンプルで効果的なスキームを提供する理論的なサポートを持つ、新しいグラフニューラルネットワークである。
我々の知る限り、我々の研究はグラフGNNスペクトルフィルタの設計にSSMを使った最初のものである。
9つの公開ベンチマークでの大規模な実験により、GrassNetは現実世界のグラフモデリングタスクにおいて優れたパフォーマンスを達成することが明らかになった。
- 参考スコア(独自算出の注目度): 57.62885438406724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing spectral convolutional networks is a formidable task in graph learning. In traditional spectral graph neural networks (GNNs), polynomial-based methods are commonly used to design filters via the Laplacian matrix. In practical applications, however, these polynomial methods encounter inherent limitations, which primarily arise from the the low-order truncation of polynomial filters and the lack of overall modeling of the graph spectrum. This leads to poor performance of existing spectral approaches on real-world graph data, especially when the spectrum is highly concentrated or contains many numerically identical values, as they tend to apply the exact same modulation to signals with the same frequencies. To overcome these issues, in this paper, we propose Graph State Space Network (GrassNet), a novel graph neural network with theoretical support that provides a simple yet effective scheme for designing and learning arbitrary graph spectral filters. In particular, our GrassNet introduces structured state space models (SSMs) to model the correlations of graph signals at different frequencies and derives a unique rectification for each frequency in the graph spectrum. To the best of our knowledge, our work is the first to employ SSMs for the design of GNN spectral filters, and it theoretically offers greater expressive power compared with polynomial filters. Extensive experiments on nine public benchmarks reveal that GrassNet achieves superior performance in real-world graph modeling tasks.
- Abstract(参考訳): スペクトル畳み込みネットワークを設計することは、グラフ学習における大きな課題である。
従来のスペクトルグラフニューラルネットワーク(GNN)では、多項式ベースの手法がラプラシア行列を介してフィルタを設計するのによく用いられる。
しかし、実際、これらの多項式法は、主に多項式フィルタの低次の切り離しとグラフスペクトルの全体モデリングの欠如から生じる固有の制限に直面する。
これにより、実世界のグラフデータに対する既存のスペクトルアプローチ、特にスペクトルが高度に集中している場合や、同じ周波数の信号に対して全く同じ変調を適用する傾向があるため、多くの数値が同じ値を含む場合、性能が低下する。
そこで本稿では,任意のグラフスペクトルフィルタを設計・学習するための簡易かつ効果的なスキームを提供する,理論的支援を備えたグラフ状態空間ネットワーク(GrassNet)を提案する。
特に、GrassNetでは、異なる周波数でのグラフ信号の相関をモデル化するための構造化状態空間モデル(SSM)を導入し、グラフスペクトルの各周波数に対して独自の補正を導出しています。
我々の知る限り、我々の研究は、GNNスペクトルフィルタの設計に初めてSSMを使用し、理論上は多項式フィルタよりも優れた表現力を提供する。
9つの公開ベンチマークでの大規模な実験により、GrassNetは現実世界のグラフモデリングタスクにおいて優れたパフォーマンスを達成することが明らかになった。
関連論文リスト
- Spatio-Spectral Graph Neural Networks [50.277959544420455]
比スペクトルグラフネットワーク(S$2$GNN)を提案する。
S$2$GNNは空間的およびスペクトル的にパラメータ化されたグラフフィルタを組み合わせる。
S$2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
論文 参考訳(メタデータ) (2024-05-29T14:28:08Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
従来の知恵は、スペクトル畳み込みネットワークは無向グラフ上にしか展開できないと規定している。
ここでは、このグラフフーリエ変換への伝統的な依存が超フルであることを示す。
本稿では,新たに開発されたフィルタの周波数応答解釈を行い,フィルタ表現に使用するベースの影響を調査し,ネットワークを基盤とする特性演算子との相互作用について議論する。
論文 参考訳(メタデータ) (2023-10-03T17:42:09Z) - Specformer: Spectral Graph Neural Networks Meet Transformers [51.644312964537356]
スペクトルグラフニューラルネットワーク(GNN)は、スペクトル領域グラフ畳み込みを通じてグラフ表現を学習する。
本稿では、全ての固有値の集合を効果的に符号化し、スペクトル領域で自己アテンションを行うSpecformerを紹介する。
複数のSpecformerレイヤを積み重ねることで、強力なスペクトルGNNを構築することができる。
論文 参考訳(メタデータ) (2023-03-02T07:36:23Z) - How Powerful are Spectral Graph Neural Networks [9.594432031144715]
スペクトルグラフニューラルネットワーク(Spectral Graph Neural Network)は、グラフ信号フィルタに基づくグラフニューラルネットワークの一種である。
まず、非線形性のないスペクトルGNNでさえ任意のグラフ信号を生成することを証明した。
また、スペクトルGNNの表現力とグラフアイソモーフィズム(GI)テストの関連性を確立する。
論文 参考訳(メタデータ) (2022-05-23T10:22:12Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - Improving Spectral Graph Convolution for Learning Graph-level
Representation [27.76697047602983]
グラフ全体の表現を学習するためには,ノード間の基本的な関係を特徴付けるため,位相的距離が必要と考えられる。
グラフフィルタの制限を取り除くことで、新たなアーキテクチャによってグラフ表現の学習のパフォーマンスが大幅に向上する。
これは、よく知られたスペクトル/ローパスフィルタと比較して、入力信号に対するスペクトルの影響を定量的に測定する理解として機能する。
論文 参考訳(メタデータ) (2021-12-14T04:50:46Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - Bridging the Gap Between Spectral and Spatial Domains in Graph Neural
Networks [8.563354084119062]
空間領域やスペクトル領域におけるグラフ畳み込み過程の等価性を示す。
提案フレームワークは、空間領域に適用しながら、独自の周波数プロファイルを持つスペクトル領域の新しい畳み込みを設計するために使用される。
論文 参考訳(メタデータ) (2020-03-26T01:49:24Z) - Spectral Graph Attention Network with Fast Eigen-approximation [103.93113062682633]
スペクトルグラフ注意ネットワーク(SpGAT)は、重み付きフィルタとグラフウェーブレットベースに関する異なる周波数成分の表現を学習する。
固有分解による計算コストを削減するために,高速近似変種SpGAT-Chebyを提案する。
半教師付きノード分類タスクにおけるSpGATとSpGAT-Chebyの性能を徹底的に評価する。
論文 参考訳(メタデータ) (2020-03-16T21:49:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。