論文の概要: A Quadratic 0-1 Programming Approach for Word Sense Disambiguation
- arxiv url: http://arxiv.org/abs/2201.04877v1
- Date: Thu, 13 Jan 2022 10:46:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-14 21:38:36.395582
- Title: A Quadratic 0-1 Programming Approach for Word Sense Disambiguation
- Title(参考訳): 単語センスの曖昧さに対する擬似0-1プログラミング手法
- Authors: Boliang Lin
- Abstract要約: 単語センスの曖昧さ(英: Word Sense Disambiguation, WSD)とは、ある文脈における曖昧な単語の感覚を決定するタスクである。
私たちは、正しいパターンを見つける上で大きな困難の1つとして、以下の原因を論じます。
本稿では,WSD問題を最大化する擬似プログラミングモデル (QIP) を用いて,異なる対象単語の感覚間の相互作用にアプローチする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Word Sense Disambiguation (WSD) is the task to determine the sense of an
ambiguous word in a given context. Previous approaches for WSD have focused on
supervised and knowledge-based methods, but inter-sense interactions patterns
or regularities for disambiguation remain to be found. We argue the following
cause as one of the major difficulties behind finding the right patterns: for a
particular context, the intended senses of a sequence of ambiguous words are
dependent on each other, i.e. the choice of one word's sense is associated with
the choice of another word's sense, making WSD a combinatorial optimization
problem.In this work, we approach the interactions between senses of different
target words by a Quadratic 0-1 Integer Programming model (QIP) that maximizes
the objective function consisting of (1) the similarity between candidate
senses of a target word and the word in a context (the sense-word similarity),
and (2) the semantic interactions (relatedness) between senses of all words in
the context (the sense-sense relatedness).
- Abstract(参考訳): word sense disambiguation (wsd) は、ある文脈における曖昧な単語の意味を決定するタスクである。
これまでのWSDのアプローチは、教師付きおよび知識に基づく手法に焦点を合わせてきたが、あいまいさに対する意味の相互作用パターンや規則性は見つからない。
We argue the following cause as one of the major difficulties behind finding the right patterns: for a particular context, the intended senses of a sequence of ambiguous words are dependent on each other, i.e. the choice of one word's sense is associated with the choice of another word's sense, making WSD a combinatorial optimization problem.In this work, we approach the interactions between senses of different target words by a Quadratic 0-1 Integer Programming model (QIP) that maximizes the objective function consisting of (1) the similarity between candidate senses of a target word and the word in a context (the sense-word similarity), and (2) the semantic interactions (relatedness) between senses of all words in the context (the sense-sense relatedness).
関連論文リスト
- Can Word Sense Distribution Detect Semantic Changes of Words? [35.17635565325166]
単語感覚分布は、英語、ドイツ語、スウェーデン語、ラテン語の単語の意味変化を正確に予測するために使用できることを示す。
SemEval 2020 Task 1のデータセットを用いた実験結果から,単語の意味的変化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-10-16T13:41:27Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
プラグマティック推論は、実生活における会話でしばしば起こる暗黙の意味を解読する上で重要な役割を担っている。
そこで我々は,現実的な推論と会話理解の場所に関するマシンの能力のベンチマークを目的とした,新しい挑戦であるDiPlomatを紹介した。
論文 参考訳(メタデータ) (2023-06-15T10:41:23Z) - Semantic Specialization for Knowledge-based Word Sense Disambiguation [12.573927420408365]
知識に基づくWord Sense Disambiguation (WSD) のための有望なアプローチは、ある文中の対象語に対して計算された単語に最も近い文脈的埋め込みを持つ感覚を選択することである。
本稿では,文脈適応型埋め込みを語彙知識のみを用いてWSDタスクに適応させるWSDのセマンティック・スペシャライゼーションを提案する。
論文 参考訳(メタデータ) (2023-04-22T07:40:23Z) - Keywords and Instances: A Hierarchical Contrastive Learning Framework
Unifying Hybrid Granularities for Text Generation [59.01297461453444]
入力テキスト中のハイブリッドな粒度意味を統一する階層的コントラスト学習機構を提案する。
実験により,本モデルがパラフレージング,対話生成,ストーリーテリングタスクにおいて,競争ベースラインより優れていることが示された。
論文 参考訳(メタデータ) (2022-05-26T13:26:03Z) - Connect-the-Dots: Bridging Semantics between Words and Definitions via
Aligning Word Sense Inventories [47.03271152494389]
Word Sense Disambiguationは、そのコンテキストに応じて、ある単語の正確な意味を自動的に識別することを目的としている。
既存の教師付きモデルは、限られた訓練データのために稀な単語感覚の正確な予測に苦慮している。
我々は,定義文を異なる意味の在庫から同じ意味に整合させ,豊富な語彙知識を収集する光沢アライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-27T00:04:33Z) - RAW-C: Relatedness of Ambiguous Words--in Context (A New Lexical
Resource for English) [2.792030485253753]
文脈的埋め込みが単語の意味の連続的、動的性質にどの程度適合しているかを評価する。
我々は、コサイン距離が、人間が同じ単語の感覚をいかに利用しているかを体系的に過小評価していることを示す。
本稿では,精神語彙の心理言語学理論と語彙意味論の計算モデルとの合成を提案する。
論文 参考訳(メタデータ) (2021-05-27T16:07:13Z) - Speakers Fill Lexical Semantic Gaps with Context [65.08205006886591]
我々は単語の語彙的あいまいさを意味のエントロピーとして運用する。
単語のあいまいさの推定値と,WordNetにおける単語の同義語数との間には,有意な相関関係が認められた。
これは、あいまいさの存在下では、話者が文脈をより情報的にすることで補うことを示唆している。
論文 参考訳(メタデータ) (2020-10-05T17:19:10Z) - SST-BERT at SemEval-2020 Task 1: Semantic Shift Tracing by Clustering in
BERT-based Embedding Spaces [63.17308641484404]
本稿では,異なる単語の意味の表現として,各単語の異なる事象のクラスタを特定することを提案する。
得られたクラスタの分解は、自然に4つのターゲット言語において、各ターゲットワードごとの意味的シフトのレベルを定量化することができる。
当社のアプローチは,提供されたすべてのSemEvalベースラインを抜いて,個別(言語毎)と全体の両方で良好に動作します。
論文 参考訳(メタデータ) (2020-10-02T08:38:40Z) - Moving Down the Long Tail of Word Sense Disambiguation with
Gloss-Informed Biencoders [79.38278330678965]
Word Sense Disambiguation (WSD)の主な障害は、単語感覚が均一に分散されないことである。
本稿では,(1)対象語とその周囲の文脈を独立に埋め込んだバイエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2020-05-06T04:21:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。