論文の概要: Adherence Forecasting for Guided Internet-Delivered Cognitive Behavioral
Therapy: A Minimally Data-Sensitive Approach
- arxiv url: http://arxiv.org/abs/2201.04967v1
- Date: Tue, 11 Jan 2022 13:55:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-15 04:55:11.188420
- Title: Adherence Forecasting for Guided Internet-Delivered Cognitive Behavioral
Therapy: A Minimally Data-Sensitive Approach
- Title(参考訳): インターネット提供型認知行動療法におけるアドヒアランス予測 : 最小データ感度アプローチ
- Authors: Ulysse C\^ot\'e-Allard, Minh H. Pham, Alexandra K. Schultz, Tine
Nordgreen, Jim Torresen
- Abstract要約: インターネット提供型心理的治療(IDPT)は、メンタルヘルスのアクセシビリティを向上させるための効果的でスケーラブルな経路であると考えられている。
本研究は,最小限の敏感なログイン/ログアウトデータに依存しながら,自動アドバンス予測を行うディープラーニングアプローチを提案する。
提案されたセルフアテンションネットワークは、治療期間の1/3が経過した時点で、平均的バランスの正確さを70%以上達成した。
- 参考スコア(独自算出の注目度): 59.535699822923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Internet-delivered psychological treatments (IDPT) are seen as an effective
and scalable pathway to improving the accessibility of mental healthcare.
Within this context, treatment adherence is an especially relevant challenge to
address due to the reduced interaction between healthcare professionals and
patients, compared to more traditional interventions. In parallel, there are
increasing regulations when using peoples' personal data, especially in the
digital sphere. In such regulations, data minimization is often a core tenant
such as within the General Data Protection Regulation (GDPR). Consequently,
this work proposes a deep-learning approach to perform automatic adherence
forecasting, while only relying on minimally sensitive login/logout data. This
approach was tested on a dataset containing 342 patients undergoing guided
internet-delivered cognitive behavioral therapy (G-ICBT) treatment. The
proposed Self-Attention Network achieved over 70% average balanced accuracy,
when only 1/3 of the treatment duration had elapsed. As such, this study
demonstrates that automatic adherence forecasting for G-ICBT, is achievable
using only minimally sensitive data, thus facilitating the implementation of
such tools within real-world IDPT platforms.
- Abstract(参考訳): インターネット提供型心理的治療(IDPT)は、メンタルヘルスのアクセシビリティを向上させるための効果的でスケーラブルな経路であると考えられている。
この文脈において、治療の順守は、伝統的な介入に比べて医療専門家と患者との相互作用が減っているため、特に問題となる。
並行して、特にデジタル分野において、人々の個人データを使用する際の規制が増加している。
このような規制では、データ最小化はしばしばGDPR(General Data Protection Regulation)のような中核的なテナントとなる。
そこで本研究では,最小限の敏感なログイン/ログアウトデータにのみ依存しながら,自動アドバンス予測を行うディープラーニング手法を提案する。
本研究は,インターネット提供型認知行動療法(G-ICBT)を施行した342例を対象に行った。
提案するセルフアテンションネットワークは平均平均バランス精度を70%以上達成し,治療期間の1/3しか経過しなかった。
そこで本研究では,G-ICBTの自動付着予測が,最小限の感度データのみを用いて実現可能であることを示す。
関連論文リスト
- Enhancing PTSD Outcome Prediction with Ensemble Models in Disaster Contexts [0.9249657468385778]
外傷後ストレス障害(PTSD)は、外傷性事象に曝される個人に影響を与える重要な精神疾患である。
PTSDの早期発見と効果的な介入は、治療を受けなければ長期の心理的苦痛につながる可能性があるため、極めて重要である。
論文 参考訳(メタデータ) (2024-11-16T01:44:43Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
我々は,多センサデータから臨床的に有用な知見を合成するために,大規模言語モデルを活用する新しいアプローチを採っている。
うつ病や不安などの症状とデータの傾向がどのように関連しているかを,LSMを用いて推論する思考促進手法の連鎖を構築した。
GPT-4のようなモデルでは数値データの75%を正確に参照しており、臨床参加者は、この手法を用いて自己追跡データを解釈することへの強い関心を表明している。
論文 参考訳(メタデータ) (2023-11-21T23:53:27Z) - Policy Optimization for Personalized Interventions in Behavioral Health [8.10897203067601]
デジタルプラットフォームを通じて提供される行動的健康介入は、健康結果を大幅に改善する可能性がある。
患者に対するパーソナライズされた介入を最適化して長期的効果を最大化する問題について検討した。
患者システムの状態空間を個別のレベルに分解するDecompPIをダブする新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-21T21:42:03Z) - Data-pooling Reinforcement Learning for Personalized Healthcare
Intervention [20.436521180168455]
我々は、一般的な摂動値反復フレームワークに基づく新しいデータプール強化学習(RL)アルゴリズムを開発した。
提案アルゴリズムは,従来の手法では推定精度とは対照的に,(後悔によって測定された)決定性能と直接結びつくことの重み付けという,3つの主要な革新とともに,履歴データを適応的にプールする。
提案手法の理論的発展を実証的に優れた性能で実証し,未計画の読解を防止するために,解凍後介入の文脈におけるケーススタディにより検証した。
論文 参考訳(メタデータ) (2022-11-16T15:52:49Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Enhancing Causal Estimation through Unlabeled Offline Data [7.305019142196583]
患者の診断と治療に強い影響を及ぼす未測定の生理的変数について検討したい。
集中的なオフライン情報は、現在の患者と部分的に関係のある以前の患者についてのみ利用可能である。
提案手法は3段階からなる: (i) 非因果推定器と因果推定器の両方を作成するために、豊富なオフラインデータを使用する。
オフラインデータが新しい観測に部分的にのみ関係している状況において、この手法が(医療的でない)実世界のタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-02-16T07:02:42Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。