Automated Reinforcement Learning: An Overview
- URL: http://arxiv.org/abs/2201.05000v1
- Date: Thu, 13 Jan 2022 14:28:06 GMT
- Title: Automated Reinforcement Learning: An Overview
- Authors: Reza Refaei Afshar, Yingqian Zhang, Joaquin Vanschoren, Uzay Kaymak
- Abstract summary: Reinforcement Learning and Deep Reinforcement Learning are popular methods for solving sequential decision making problems.
In this article, we explore the literature and present recent work that can be used in automated RL.
- Score: 6.654552816487819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning and recently Deep Reinforcement Learning are popular
methods for solving sequential decision making problems modeled as Markov
Decision Processes. RL modeling of a problem and selecting algorithms and
hyper-parameters require careful considerations as different configurations may
entail completely different performances. These considerations are mainly the
task of RL experts; however, RL is progressively becoming popular in other
fields where the researchers and system designers are not RL experts. Besides,
many modeling decisions, such as defining state and action space, size of
batches and frequency of batch updating, and number of timesteps are typically
made manually. For these reasons, automating different components of RL
framework is of great importance and it has attracted much attention in recent
years. Automated RL provides a framework in which different components of RL
including MDP modeling, algorithm selection and hyper-parameter optimization
are modeled and defined automatically. In this article, we explore the
literature and present recent work that can be used in automated RL. Moreover,
we discuss the challenges, open questions and research directions in AutoRL.
Related papers
- Transform then Explore: a Simple and Effective Technique for Exploratory Combinatorial Optimization with Reinforcement Learning [11.531786269804707]
We propose a gauge transformation (GT) technique to solve optimization problems (COPs) over graphs.
GT is very simple, which can be implemented with less than 10 lines of Python codes, and can be applied to a vast majority of reinforcement learning models.
We show that traditional RL models with GT technique produce the state-of-the-art performances on the MaxCut problem.
arXiv Detail & Related papers (2024-04-06T15:31:17Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - Deep reinforcement learning for machine scheduling: Methodology, the
state-of-the-art, and future directions [2.4541568670428915]
Machine scheduling aims to optimize job assignments to machines while adhering to manufacturing rules and job specifications.
Deep Reinforcement Learning (DRL), a key component of artificial general intelligence, has shown promise in various domains like gaming and robotics.
This paper offers a comprehensive review and comparison of DRL-based approaches, highlighting their methodology, applications, advantages, and limitations.
arXiv Detail & Related papers (2023-10-04T22:45:09Z) - AutoRL Hyperparameter Landscapes [69.15927869840918]
Reinforcement Learning (RL) has shown to be capable of producing impressive results, but its use is limited by the impact of its hyperparameters on performance.
We propose an approach to build and analyze these hyperparameter landscapes not just for one point in time but at multiple points in time throughout training.
This supports the theory that hyperparameters should be dynamically adjusted during training and shows the potential for more insights on AutoRL problems that can be gained through landscape analyses.
arXiv Detail & Related papers (2023-04-05T12:14:41Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL.
We provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
arXiv Detail & Related papers (2022-01-11T12:41:43Z) - Towards Standardizing Reinforcement Learning Approaches for Stochastic
Production Scheduling [77.34726150561087]
reinforcement learning can be used to solve scheduling problems.
Existing studies rely on (sometimes) complex simulations for which the code is unavailable.
There is a vast array of RL designs to choose from.
standardization of model descriptions - both production setup and RL design - and validation scheme are a prerequisite.
arXiv Detail & Related papers (2021-04-16T16:07:10Z) - A Comparative Analysis of Deep Reinforcement Learning-enabled Freeway
Decision-making for Automated Vehicles [2.394554182452767]
Deep reinforcement learning (DRL) has emerged as a potent methodology for addressing artificial intelligence challenges.
This article compares several DRL approaches for decision-making challenges encountered by autono-mous vehicles on freeways.
A series of simulation experiments are conducted to assess the control performance of these DRL-enabled decision-making strategies.
arXiv Detail & Related papers (2020-08-04T03:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.