Deep reinforcement learning for machine scheduling: Methodology, the
state-of-the-art, and future directions
- URL: http://arxiv.org/abs/2310.03195v1
- Date: Wed, 4 Oct 2023 22:45:09 GMT
- Title: Deep reinforcement learning for machine scheduling: Methodology, the
state-of-the-art, and future directions
- Authors: Maziyar Khadivi, Todd Charter, Marjan Yaghoubi, Masoud Jalayer, Maryam
Ahang, Ardeshir Shojaeinasab, Homayoun Najjaran
- Abstract summary: Machine scheduling aims to optimize job assignments to machines while adhering to manufacturing rules and job specifications.
Deep Reinforcement Learning (DRL), a key component of artificial general intelligence, has shown promise in various domains like gaming and robotics.
This paper offers a comprehensive review and comparison of DRL-based approaches, highlighting their methodology, applications, advantages, and limitations.
- Score: 2.4541568670428915
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine scheduling aims to optimize job assignments to machines while
adhering to manufacturing rules and job specifications. This optimization leads
to reduced operational costs, improved customer demand fulfillment, and
enhanced production efficiency. However, machine scheduling remains a
challenging combinatorial problem due to its NP-hard nature. Deep Reinforcement
Learning (DRL), a key component of artificial general intelligence, has shown
promise in various domains like gaming and robotics. Researchers have explored
applying DRL to machine scheduling problems since 1995. This paper offers a
comprehensive review and comparison of DRL-based approaches, highlighting their
methodology, applications, advantages, and limitations. It categorizes these
approaches based on computational components: conventional neural networks,
encoder-decoder architectures, graph neural networks, and metaheuristic
algorithms. Our review concludes that DRL-based methods outperform exact
solvers, heuristics, and tabular reinforcement learning algorithms in terms of
computation speed and generating near-global optimal solutions. These DRL-based
approaches have been successfully applied to static and dynamic scheduling
across diverse machine environments and job characteristics. However, DRL-based
schedulers face limitations in handling complex operational constraints,
configurable multi-objective optimization, generalization, scalability,
interpretability, and robustness. Addressing these challenges will be a crucial
focus for future research in this field. This paper serves as a valuable
resource for researchers to assess the current state of DRL-based machine
scheduling and identify research gaps. It also aids experts and practitioners
in selecting the appropriate DRL approach for production scheduling.
Related papers
- Offline reinforcement learning for job-shop scheduling problems [1.3927943269211593]
This paper introduces a novel offline RL method designed for optimization problems with complex constraints.
Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions.
We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks.
arXiv Detail & Related papers (2024-10-21T07:33:42Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Review of Deep Reinforcement Learning in Serverless Computing:
Function Scheduling and Resource Auto-Scaling [2.0722667822370386]
This paper presents a comprehensive review of the application of Deep Reinforcement Learning (DRL) techniques in serverless computing.
A systematic review of recent studies applying DRL to serverless computing is presented, covering various algorithms, models, and performances.
Our analysis reveals that DRL, with its ability to learn and adapt from an environment, shows promising results in improving the efficiency of function scheduling and resource scaling.
arXiv Detail & Related papers (2023-10-05T09:26:04Z) - Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
In flexible job shop scheduling problem (FJSP), operations can be processed on multiple machines, leading to intricate relationships between operations and machines.
Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP.
This paper presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making.
arXiv Detail & Related papers (2023-05-09T01:35:48Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
This article presents a memetic algorithm with applying deep reinforcement learning (DRL) to flexible job shop scheduling problems (DRC-FJSSP)
From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration.
arXiv Detail & Related papers (2022-12-21T11:24:32Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Towards Standardizing Reinforcement Learning Approaches for Stochastic
Production Scheduling [77.34726150561087]
reinforcement learning can be used to solve scheduling problems.
Existing studies rely on (sometimes) complex simulations for which the code is unavailable.
There is a vast array of RL designs to choose from.
standardization of model descriptions - both production setup and RL design - and validation scheme are a prerequisite.
arXiv Detail & Related papers (2021-04-16T16:07:10Z) - A Survey of Reinforcement Learning Algorithms for Dynamically Varying
Environments [1.713291434132985]
Reinforcement learning (RL) algorithms find applications in inventory control, recommender systems, vehicular traffic management, cloud computing and robotics.
Real-world complications of many tasks arising in these domains makes them difficult to solve with the basic assumptions underlying classical RL algorithms.
This paper provides a survey of RL methods developed for handling dynamically varying environment models.
A representative collection of these algorithms is discussed in detail in this work along with their categorization and their relative merits and demerits.
arXiv Detail & Related papers (2020-05-19T09:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.