Sintel: A Machine Learning Framework to Extract Insights from Signals
- URL: http://arxiv.org/abs/2204.09108v1
- Date: Tue, 19 Apr 2022 19:38:27 GMT
- Title: Sintel: A Machine Learning Framework to Extract Insights from Signals
- Authors: Sarah Alnegheimish, Dongyu Liu, Carles Sala, Laure Berti-Equille,
Kalyan Veeramachaneni
- Abstract summary: We introduce Sintel, a machine learning framework for end-to-end time series tasks such as anomaly detection.
Sintel logs the entire anomaly detection journey, providing detailed documentation of anomalies over time.
It enables users to analyze signals, compare methods, and investigate anomalies through an interactive visualization tool.
- Score: 13.04826679898367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The detection of anomalies in time series data is a critical task with many
monitoring applications. Existing systems often fail to encompass an end-to-end
detection process, to facilitate comparative analysis of various anomaly
detection methods, or to incorporate human knowledge to refine output. This
precludes current methods from being used in real-world settings by
practitioners who are not ML experts. In this paper, we introduce Sintel, a
machine learning framework for end-to-end time series tasks such as anomaly
detection. The framework uses state-of-the-art approaches to support all steps
of the anomaly detection process. Sintel logs the entire anomaly detection
journey, providing detailed documentation of anomalies over time. It enables
users to analyze signals, compare methods, and investigate anomalies through an
interactive visualization tool, where they can annotate, modify, create, and
remove events. Using these annotations, the framework leverages human knowledge
to improve the anomaly detection pipeline. We demonstrate the usability,
efficiency, and effectiveness of Sintel through a series of experiments on
three public time series datasets, as well as one real-world use case involving
spacecraft experts tasked with anomaly analysis tasks. Sintel's framework,
code, and datasets are open-sourced at https://github.com/sintel-dev/.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - A Survey of Time Series Anomaly Detection Methods in the AIOps Domain [16.92261613814882]
Internet-based services have seen remarkable success, generating vast amounts of monitored key performance indicators (KPIs)
This review offers a comprehensive overview of time series anomaly detection in Artificial Intelligence for IT operations (AIOps)
It explores future directions for real-world and next-generation time-series anomaly detection based on recent advancements.
arXiv Detail & Related papers (2023-08-01T09:13:57Z) - From Explanation to Action: An End-to-End Human-in-the-loop Framework
for Anomaly Reasoning and Management [15.22568616519016]
We introduce ALARM, an end-to-end framework that supports the anomaly mining cycle comprehensively.
It offers anomaly explanations and an interactive GUI for human-in-the-loop processes.
We demonstrate ALARM's efficacy through a series of case studies with fraud analysts from the financial industry.
arXiv Detail & Related papers (2023-04-06T20:49:36Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
Anomaly detection can now rely on measurements sampled at a very high frequency.
It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets.
arXiv Detail & Related papers (2022-01-13T18:20:32Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Anomaly Detection in Video via Self-Supervised and Multi-Task Learning [113.81927544121625]
Anomaly detection in video is a challenging computer vision problem.
In this paper, we approach anomalous event detection in video through self-supervised and multi-task learning at the object level.
arXiv Detail & Related papers (2020-11-15T10:21:28Z) - Exathlon: A Benchmark for Explainable Anomaly Detection over Time Series [6.085662888748731]
We present Exathlon, the first benchmark for explainable anomaly detection over high-dimensional time series data.
Exathlon has been constructed based on real data traces from repeated executions of large-scale stream processing jobs on an Apache Spark cluster.
For each of the anomaly instances, ground truth labels for the root cause interval as well as those for the extended effect interval are provided.
arXiv Detail & Related papers (2020-10-10T19:31:22Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - An Intelligent and Time-Efficient DDoS Identification Framework for
Real-Time Enterprise Networks SAD-F: Spark Based Anomaly Detection Framework [0.5811502603310248]
We will be exploring security analytic techniques for DDoS anomaly detection using different machine learning techniques.
In this paper, we are proposing a novel approach which deals with real traffic as input to the system.
We study and compare the performance factor of our proposed framework on three different testbeds.
arXiv Detail & Related papers (2020-01-21T06:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.