`Next Generation' Reservoir Computing: an Empirical Data-Driven
Expression of Dynamical Equations in Time-Stepping Form
- URL: http://arxiv.org/abs/2201.05193v1
- Date: Thu, 13 Jan 2022 20:13:33 GMT
- Title: `Next Generation' Reservoir Computing: an Empirical Data-Driven
Expression of Dynamical Equations in Time-Stepping Form
- Authors: Tse-Chun Chen, Stephen G. Penny, Timothy A. Smith, Jason A. Platt
- Abstract summary: Next generation reservoir computing based on nonlinear vector autoregression is applied to emulate simple dynamical system models.
It is also shown that the approach can be extended to produce high-order numerical schemes directly from data.
The impacts of the presence of noise and temporal sparsity in the training set is examined to gauge the potential use of this method for more realistic applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Next generation reservoir computing based on nonlinear vector autoregression
(NVAR) is applied to emulate simple dynamical system models and compared to
numerical integration schemes such as Euler and the $2^\text{nd}$ order
Runge-Kutta. It is shown that the NVAR emulator can be interpreted as a
data-driven method used to recover the numerical integration scheme that
produced the data. It is also shown that the approach can be extended to
produce high-order numerical schemes directly from data. The impacts of the
presence of noise and temporal sparsity in the training set is further examined
to gauge the potential use of this method for more realistic applications.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Extrapolating tipping points and simulating non-stationary dynamics of
complex systems using efficient machine learning [2.44755919161855]
We propose a novel, fully data-driven machine learning algorithm based on next-generation reservoir computing to extrapolate the bifurcation behavior of nonlinear dynamical systems.
In doing so, post-tipping point dynamics of unseen parameter regions can be simulated.
arXiv Detail & Related papers (2023-12-11T10:37:28Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Interpretable reduced-order modeling with time-scale separation [9.889399863931676]
Partial Differential Equations (PDEs) with high dimensionality are commonly encountered in computational physics and engineering.
We propose a data-driven scheme that automates the identification of the time-scales involved.
We show that this data-driven scheme can automatically learn the independent processes that decompose a system of linear ODEs.
arXiv Detail & Related papers (2023-03-03T19:23:59Z) - Learning and Inference in Sparse Coding Models with Langevin Dynamics [3.0600309122672726]
We describe a system capable of inference and learning in a probabilistic latent variable model.
We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics.
We show that Langevin dynamics lead to an efficient procedure for sampling from the posterior distribution in the 'L0 sparse' regime, where latent variables are encouraged to be set to zero as opposed to having a small L1 norm.
arXiv Detail & Related papers (2022-04-23T23:16:47Z) - Extracting Stochastic Governing Laws by Nonlocal Kramers-Moyal Formulas [3.8325907381729496]
We propose a data-driven approach to extract governing laws with both (Gaussian) Brownian motion and (non-Gaussian) L'evy motion.
We demonstrate that this approach can learn the differential equation with L'evy motion.
arXiv Detail & Related papers (2021-08-28T04:56:51Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
We infer equations with non-Gaussian L'evy noise from available data to reasonably predict dynamical behaviors.
We establish a theoretical framework and design a numerical algorithm to compute the asymmetric L'evy jump measure, drift and diffusion.
This method will become an effective tool in discovering the governing laws from available data sets and in understanding the mechanisms underlying complex random phenomena.
arXiv Detail & Related papers (2021-07-21T14:50:36Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.