論文の概要: Parallel Neural Local Lossless Compression
- arxiv url: http://arxiv.org/abs/2201.05213v1
- Date: Thu, 13 Jan 2022 21:07:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-17 14:36:19.845308
- Title: Parallel Neural Local Lossless Compression
- Title(参考訳): パラレルニューラル局所ロスレス圧縮
- Authors: Mingtian Zhang and Jamie Townsend and Ning Kang and David Barber
- Abstract要約: 最近提案されたニューラルローカルロスレス圧縮(NeLLoC)は局所自己回帰モデルに基づいている。
本稿では,局所自己回帰モデルに対する並列化手法を提案する。
- 参考スコア(独自算出の注目度): 15.736300086485368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recently proposed Neural Local Lossless Compression (NeLLoC), which is
based on a local autoregressive model, has achieved state-of-the-art (SOTA)
out-of-distribution (OOD) generalization performance in the image compression
task. In addition to the encouragement of OOD generalization, the local model
also allows parallel inference in the decoding stage. In this paper, we propose
a parallelization scheme for local autoregressive models. We discuss the
practicalities of implementing this scheme, and provide experimental evidence
of significant gains in compression runtime compared to the previous,
non-parallel implementation.
- Abstract(参考訳): 最近提案されたNeural Local Lossless Compression (NeLLoC)は、局所自己回帰モデルに基づいて、画像圧縮タスクにおいて最先端のSOTA(out-of-distribution)一般化性能を達成した。
OOD一般化の促進に加えて、局所モデルは復号段階における並列推論も可能にしている。
本稿では,局所自己回帰モデルに対する並列化スキームを提案する。
本稿では, 従来の非並列実装と比較して, 圧縮実行時の顕著な利得を示す実験的な証拠を提供する。
関連論文リスト
- Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
イテレーティブ・プルーニング(ACIP)による圧縮について紹介する。
ACIPは、単一の勾配降下ランから圧縮性能トレードオフを決定するアルゴリズム的なアプローチである。
本稿では,ACIPが共通量子化に基づく圧縮手法をシームレスに補完することを示す。
論文 参考訳(メタデータ) (2025-02-03T18:40:58Z) - DGTR: Distributed Gaussian Turbo-Reconstruction for Sparse-View Vast Scenes [81.56206845824572]
新規ビュー合成(NVS)アプローチは、広大なシーン再構築において重要な役割を担っている。
大規模な環境下では、復元の質が悪くなる場合が少なくない。
本稿では,スパース・ビュー・ワイド・シーンのための効率的なガウス再構成のための分散フレームワークであるDGTRを提案する。
論文 参考訳(メタデータ) (2024-11-19T07:51:44Z) - Rethinking Compression: Reduced Order Modelling of Latent Features in
Large Language Models [9.91972450276408]
本稿では,Large Language Models (LLMs) のパラメトリックおよび実用的な圧縮に対して,低次モデリングに基づく革新的なアプローチを提案する。
本手法は, 行列分解を利用したモデル圧縮の顕著な進歩を示し, 最先端の構造化プルーニング法よりも優れた有効性を示した。
論文 参考訳(メタデータ) (2023-12-12T07:56:57Z) - Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
学習された画像圧縮のフレームワークでは、コンテキストモデルは潜在表現間の依存関係をキャプチャする上で重要な役割を果たす。
本研究では,textbfCorner-to-Center 変換器を用いたコンテキストモデル (C$3$M) を提案する。
また,解析および合成変換における受容場を拡大するために,エンコーダ/デコーダのLong-range Crossing Attention Module (LCAM) を用いる。
論文 参考訳(メタデータ) (2023-11-29T21:40:28Z) - Riemannian Low-Rank Model Compression for Federated Learning with
Over-the-Air Aggregation [2.741266294612776]
低ランクモデル圧縮は、機械学習モデルを訓練する際の計算負荷を減らすために広く使われている技法である。
既存の圧縮技術は、連合学習システムにおける効率の良いオーバー・ザ・エア(OTA)アグリゲーションには直接適用できない。
低ランク制約を緩和しないFLにおける低ランクモデル圧縮のための新しい多様体最適化法を提案する。
論文 参考訳(メタデータ) (2023-06-04T18:32:50Z) - Reducing Computational Complexity of Neural Networks in Optical Channel
Equalization: From Concepts to Implementation [1.6987798749419218]
本稿では,従来のディジタルバックプロパゲーション(DBP)イコライザよりも実装が簡単で,性能も優れたNNベースのイコライザを設計できることを示す。
NNに基づく等化器は、完全電子色分散補償ブロックと同程度の複雑さを維持しつつ、優れた性能を達成することができる。
論文 参考訳(メタデータ) (2022-08-26T21:00:05Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
本稿では,知識蒸留とプルーニングを含む2つの一般的なモデル圧縮手法について検討する。
本研究では, 圧縮モデルが, 対向テストセット上のPLMモデルよりもはるかに頑健であることを示す。
サンプル不確実性に基づくモデル圧縮の正規化戦略を開発する。
論文 参考訳(メタデータ) (2021-10-16T00:20:04Z) - Learning Accurate Entropy Model with Global Reference for Image
Compression [22.171750277528222]
本稿では,局所的およびグローバルな文脈情報を活用するために,画像圧縮のための新しいグローバル参照モデルを提案する。
この研究の副産物は、パフォーマンスをさらに向上する平均シフトGDNモジュールの革新である。
論文 参考訳(メタデータ) (2020-10-16T11:27:46Z) - Learning Context-Based Non-local Entropy Modeling for Image Compression [140.64888994506313]
本稿では,文脈内でのグローバルな類似性を利用して,文脈モデリングのための非局所的操作を提案する。
エントロピーモデルはさらに、結合速度歪み最適化における速度損失として採用されている。
低歪みモデルのトレーニングに変換の幅が不可欠であることを考えると、最終的に変換のU-Netブロックを生成して、管理可能なメモリ消費と時間複雑性で幅を拡大する。
論文 参考訳(メタデータ) (2020-05-10T13:28:18Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
本稿では,効率的なネットワーク圧縮のための新しい構造空間分割法を提案する。
提案手法は, 畳み込み重みに対する構造的疎度を自動的に誘導する。
また,学習可能なチャネルシャッフル機構によるグループ間通信の問題にも対処する。
論文 参考訳(メタデータ) (2020-02-19T12:03:10Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
ニューラルネットワークアーキテクチャの制約に基づく表現について検討する。
本稿では,いわゆるアーキテクチャ制約を満たすのに適した簡単な最適化手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T16:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。