論文の概要: Rethinking Compression: Reduced Order Modelling of Latent Features in
Large Language Models
- arxiv url: http://arxiv.org/abs/2312.07046v1
- Date: Tue, 12 Dec 2023 07:56:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 16:58:26.555647
- Title: Rethinking Compression: Reduced Order Modelling of Latent Features in
Large Language Models
- Title(参考訳): 圧縮を再考する:大規模言語モデルにおける潜在特徴の低次モデリング
- Authors: Arnav Chavan, Nahush Lele and Deepak Gupta
- Abstract要約: 本稿では,Large Language Models (LLMs) のパラメトリックおよび実用的な圧縮に対して,低次モデリングに基づく革新的なアプローチを提案する。
本手法は, 行列分解を利用したモデル圧縮の顕著な進歩を示し, 最先端の構造化プルーニング法よりも優れた有効性を示した。
- 参考スコア(独自算出の注目度): 9.91972450276408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the substantial scale of Large Language Models (LLMs), the direct
application of conventional compression methodologies proves impractical. The
computational demands associated with even minimal gradient updates present
challenges, particularly on consumer-grade hardware. This paper introduces an
innovative approach for the parametric and practical compression of LLMs based
on reduced order modelling, which entails low-rank decomposition within the
feature space and re-parameterization in the weight space. Notably, this
compression technique operates in a layer-wise manner, obviating the need for a
GPU device and enabling the compression of billion-scale models within
stringent constraints of both memory and time. Our method represents a
significant advancement in model compression by leveraging matrix
decomposition, demonstrating superior efficacy compared to the prevailing
state-of-the-art structured pruning method.
- Abstract(参考訳): 大規模言語モデル(llm)の大規模化により、従来の圧縮手法の直接適用は実用的でないことが証明される。
最小限の勾配更新を伴う計算要求は、特にコンシューマグレードのハードウェアにおいて問題となる。
本稿では,特徴空間における低ランク分解と重み空間の再パラメータ化を伴う低次モデルに基づくllmのパラメトリック・実用的な圧縮手法を提案する。
特に、この圧縮技術は階層的に動作し、GPUデバイスの必要性を回避し、メモリと時間の両方の厳密な制約の中で数十億のモデルの圧縮を可能にする。
本手法は, マトリックス分解を利用したモデル圧縮の著しい進歩を示し, 従来の構造的プルーニング法と比較して優れた効果を示す。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
大型言語モデル(LLM)はゼロショット設定でグラデーション先行として振る舞うことができる。
本稿では,LSMと算術符号を統合する新しい手法であるLM-GCを紹介する。
論文 参考訳(メタデータ) (2024-09-26T13:38:33Z) - MoDeGPT: Modular Decomposition for Large Language Model Compression [59.361006801465344]
本稿では,新しい構造化圧縮フレームワークである textbfModular bfDecomposition (MoDeGPT) を紹介する。
MoDeGPTはTransformerブロックを行列対からなるモジュールに分割し、隠れた次元を減らす。
本実験では, 後方伝播を伴わないMoDeGPTが, 従来の圧縮手法と一致するか, あるいは超えていることを示す。
論文 参考訳(メタデータ) (2024-08-19T01:30:14Z) - MCNC: Manifold Constrained Network Compression [21.70510507535041]
MCNCをパラメータ空間を低次元の事前定義および凍結された非線形多様体に制約する新しいモデル圧縮法として提示する。
提案手法であるMCNCは, 圧縮, 精度, モデル再構成時間において, 最先端のベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2024-06-27T16:17:26Z) - Feature-based Low-Rank Compression of Large Language Models via Bayesian Optimization [40.15915011575071]
低ランク圧縮は、大規模言語モデルにおける非必須パラメータを減らすための有望な手法である。
大型モデルの低ランク特性に関する実証的研究を行う。
大規模言語モデルに適した低ランク圧縮手法を提案する。
論文 参考訳(メタデータ) (2024-05-17T08:27:12Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - Efficient Compression of Overparameterized Deep Models through
Low-Dimensional Learning Dynamics [10.673414267895355]
本稿ではパラメータ化モデルを用いた新しい圧縮手法を提案する。
本アルゴリズムは, 一般化を損なうことなく, トレーニング効率を2倍以上に向上させる。
論文 参考訳(メタデータ) (2023-11-08T23:57:03Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - Just CHOP: Embarrassingly Simple LLM Compression [27.64461490974072]
LLM(Large Language Model)は、非並列の少数およびゼロショット推論機能を実現するが、高い計算フットプリントを実現する。
拡張言語モデル事前学習と組み合わせた単純なレイヤプルーニングは、7Bスケールでモデルの構造的および半構造化された圧縮に対して最先端の結果をもたらすことを示す。
また,より小さなBERT型モデルのタスク非依存圧縮において非常に効果的であった蒸留が,我々の単純な刈り取り技術に対して非効率になることを示す。
論文 参考訳(メタデータ) (2023-05-24T08:18:35Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
本稿では,知識蒸留とプルーニングを含む2つの一般的なモデル圧縮手法について検討する。
本研究では, 圧縮モデルが, 対向テストセット上のPLMモデルよりもはるかに頑健であることを示す。
サンプル不確実性に基づくモデル圧縮の正規化戦略を開発する。
論文 参考訳(メタデータ) (2021-10-16T00:20:04Z) - A Model Compression Method with Matrix Product Operators for Speech
Enhancement [15.066942043773267]
本稿では,行列積演算子(MPO)に基づくモデル圧縮手法を提案する。
本稿では,特にクラウドフリーアプリケーションにおいて,音声強調のための効果的なモデル圧縮手法を提案する。
論文 参考訳(メタデータ) (2020-10-10T08:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。