Learning Enhancement of CNNs via Separation Index Maximizing at the
First Convolutional Layer
- URL: http://arxiv.org/abs/2201.05217v1
- Date: Thu, 13 Jan 2022 21:32:14 GMT
- Title: Learning Enhancement of CNNs via Separation Index Maximizing at the
First Convolutional Layer
- Authors: Ali Karimi and Ahmad Kalhor
- Abstract summary: The Separation Index (SI) as a supervised complexity measure is explained its usage in better learning of CNNs for classification problems illustrate.
A learning strategy proposes through which the first layer of a CNN is optimized by maximizing the SI, and the further layers are trained through the backpropagation algorithm to learn further layers.
- Score: 1.6244541005112747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a straightforward enhancement learning algorithm based on
Separation Index (SI) concept is proposed for Convolutional Neural Networks
(CNNs). At first, the SI as a supervised complexity measure is explained its
usage in better learning of CNNs for classification problems illustrate. Then,
a learning strategy proposes through which the first layer of a CNN is
optimized by maximizing the SI, and the further layers are trained through the
backpropagation algorithm to learn further layers. In order to maximize the SI
at the first layer, A variant of ranking loss is optimized by using the quasi
least square error technique. Applying such a learning strategy to some known
CNNs and datasets, its enhancement impact in almost all cases is demonstrated.
Related papers
- Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
arXiv Detail & Related papers (2023-07-07T15:03:42Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
Convolutional neural networks (CNNs) are a representative class of deep learning algorithms.
We introduce SA-CNN neural networks for text classification tasks based on Text-CNN neural networks.
arXiv Detail & Related papers (2023-03-13T14:27:34Z) - A Gradient Boosting Approach for Training Convolutional and Deep Neural
Networks [0.0]
We introduce two procedures for training Convolutional Neural Networks (CNNs) and Deep Neural Network based on Gradient Boosting (GB)
The presented models show superior performance in terms of classification accuracy with respect to standard CNN and Deep-NN with the same architectures.
arXiv Detail & Related papers (2023-02-22T12:17:32Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Sparse tree-based initialization for neural networks [0.0]
We show that dedicated neural network (NN) architectures can handle specific data types such as CNN for images or RNN for text.
In this work, we propose a new technique for (potentially deep) multilayer perceptrons (MLP)
We show that our new initializer operates an implicit regularization during the NN training, and emphasizes that the first layers act as a sparse feature extractor.
arXiv Detail & Related papers (2022-09-30T07:44:03Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Online Sequential Extreme Learning Machines: Features Combined From
Hundreds of Midlayers [0.0]
In this paper, we develop an algorithm called hierarchal online sequential learning algorithm (H-OS-ELM)
The algorithm can learn chunk by chunk with fixed or varying block size.
arXiv Detail & Related papers (2020-06-12T00:50:04Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.