論文の概要: Structure Enhanced Graph Neural Networks for Link Prediction
- arxiv url: http://arxiv.org/abs/2201.05293v1
- Date: Fri, 14 Jan 2022 03:49:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-17 14:55:08.426982
- Title: Structure Enhanced Graph Neural Networks for Link Prediction
- Title(参考訳): リンク予測のための構造強化グラフニューラルネットワーク
- Authors: Baole Ai, Zhou Qin, Wenting Shen, Yong Li
- Abstract要約: リンク予測のための構造拡張グラフニューラルネットワーク(SEG)を提案する。
SEGは、ターゲットノードの周囲の位相情報を通常のGNNモデルに組み込む。
OGBリンク予測データセットの実験は、SEGが最先端の結果を達成することを示す。
- 参考スコア(独自算出の注目度): 6.872826041648584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have shown promising results in various tasks,
among which link prediction is an important one. GNN models usually follow a
node-centric message passing procedure that aggregates the neighborhood
information to the central node recursively. Following this paradigm, features
of nodes are passed through edges without caring about where the nodes are
located and which role they played. However, the neglected topological
information is shown to be valuable for link prediction tasks. In this paper,
we propose Structure Enhanced Graph neural network (SEG) for link prediction.
SEG introduces the path labeling method to capture surrounding topological
information of target nodes and then incorporates the structure into an
ordinary GNN model. By jointly training the structure encoder and deep GNN
model, SEG fuses topological structures and node features to take full
advantage of graph information. Experiments on the OGB link prediction datasets
demonstrate that SEG achieves state-of-the-art results among all three public
datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は様々なタスクにおいて有望な結果を示しており、リンク予測が重要である。
GNNモデルは、通常、近隣情報を中央ノードに再帰的に集約するノード中心のメッセージパッシング手順に従う。
このパラダイムに従い、ノードの特徴は、ノードの位置とそれが果たす役割を気にせずにエッジを通過する。
しかし、無視されたトポロジ情報はリンク予測タスクに有用であることが示されている。
本稿では,リンク予測のための構造拡張グラフニューラルネットワーク(SEG)を提案する。
SEGは,対象ノードのトポロジ情報を取り込むパスラベリング手法を導入し,その構造を通常のGNNモデルに組み込む。
構造エンコーダと深部GNNモデルを共同でトレーニングすることにより、SEGはトポロジ構造とノード特徴を融合させ、グラフ情報を完全に活用する。
OGBリンク予測データセットの実験は、SEGが3つの公開データセットすべてで最先端の結果を達成することを示した。
関連論文リスト
- Can GNNs Learn Link Heuristics? A Concise Review and Evaluation of Link Prediction Methods [16.428742189544955]
本稿では,リンク予測のための各種情報学習におけるグラフニューラルネットワーク(GNN)の機能について検討する。
解析の結果,GNNは2つのノード間の共通隣接点数に関する構造情報を効果的に学習できないことがわかった。
また、トレーニング可能なノード埋め込みにより、GNNベースのリンク予測モデルの性能が向上することを示す。
論文 参考訳(メタデータ) (2024-11-22T03:38:20Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
グラフニューラルネットワーク(GNN)が導入される以前、不規則なデータ、特にグラフのモデリングと解析は、ディープラーニングのアキレスのヒールであると考えられていた。
本稿では,GNNのコア操作に対して,極めて単純かつ無作為な修正を施した中央ノード置換変分関数を提案する。
モデルの具体的な性能向上は、モデルがより少ないパラメータを使用しながら、有意なマージンで過去の最先端結果を上回った場合に観察される。
論文 参考訳(メタデータ) (2021-09-20T05:04:26Z) - WGCN: Graph Convolutional Networks with Weighted Structural Features [25.64794159605137]
グラフ畳み込みネットワーク(GCN)は、構造情報をキャプチャしてノードの表現を学習する。
WGCNという重み付き構造を有するGCNモデルを提案する。
実験の結果、WGCNは5つのベンチマークデータセットの精度において、ベースラインモデルを最大17.07%向上させることがわかった。
論文 参考訳(メタデータ) (2021-04-29T00:50:06Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - GAIN: Graph Attention & Interaction Network for Inductive
Semi-Supervised Learning over Large-scale Graphs [18.23435958000212]
グラフニューラルネットワーク(GNN)は、推薦、ノード分類、リンク予測など、さまざまな機械学習タスクにおいて最先端のパフォーマンスを実現している。
既存のGNNモデルの多くは、隣接するノード情報を集約するために単一のタイプのアグリゲータを利用している。
本稿では,グラフ上の帰納学習のための新しいグラフニューラルネットワークアーキテクチャであるグラフ注意と相互作用ネットワーク(GAIN)を提案する。
論文 参考訳(メタデータ) (2020-11-03T00:20:24Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。