Spectrum of Single-Photon Scattering in a Strong-Coupling Hybrid
Optomechanical System
- URL: http://arxiv.org/abs/2201.05370v1
- Date: Fri, 14 Jan 2022 10:16:09 GMT
- Title: Spectrum of Single-Photon Scattering in a Strong-Coupling Hybrid
Optomechanical System
- Authors: S. Y. Yang, W. Z. Jia and H. Yuan
- Abstract summary: We analyze theoretically the single-photon excitation and transmission spectra of a strong-coupling hybrid optomechanics.
We find that the fine structure around each sideband can be used to characterize the TLS-MR and the effective TLS-photon couplings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We analyze theoretically the single-photon excitation and transmission
spectra of a strong-coupling hybrid optomechanics, where a two-level system
(TLS) is coupled to the mechanical resonator (MR), generating the
Jaynes-Cummings-type polariton doublets. In our model, both the optomichanical
coupling and the TLS-MR coupling are strong. In this parameter region, the
polaron-assisted excitation and reemission processes can strongly affect the
single-photon excitation and output spectra of the cavity. We find that the
fine structure around each sideband can be used to characterize the TLS-MR and
the effective TLS-photon couplings, even at single-quantum level. Thus, the
spectrum structures may make it possible to sensitively probe the quantum
nature of a macroscopic mechanical element. We further provide a possible
approach for tomographic reconstruction of the state of a TLS, utilizing the
single-photon transmission spectra.
Related papers
- Single-photon scattering in giant-atom topological-waveguide-QED systems [1.2479554210753663]
We study single-photon scattering in a Su-Schrieffer-Heeger (SSH) waveguide coupled to either one or two two-level giant atoms.
We find that a single photon in the SSH waveguide can be completely reflected or transmitted by choosing proper coupling configurations.
This work will inspire the development of controllable single-photon devices based on the giant-atom topological-waveguide-QED systems.
arXiv Detail & Related papers (2024-08-26T10:57:23Z) - Engineering biphoton spectral wavefunction in a silicon micro-ring resonator with split resonances [21.14676162428423]
Control of frequency-time amplitude of a photon's electric field has been demonstrated on platforms with second-order optical nonlinearity.
Here, we demonstrate a cavity-enhanced photon-pair source that can generate both separable states and controllable entangled states.
Experiments and simulations demonstrate the capacity to manipulate the frequency-domain wavefunction in a silicon-based device.
arXiv Detail & Related papers (2024-08-24T14:23:21Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Sculpting ultrastrong light-matter coupling through spatial matter
structuring [0.0]
We experimentally implement a novel strategy to sculpt ultrastrong multi-mode coupling.
We control the number of light-matter coupled modes, their octave-spanning frequency spectra, and their response to magnetic tuning.
This offers novel pathways for controlling dissipation, tailoring quantum light sources, nonlinearities, correlations, as well as entanglement in quantum information processing.
arXiv Detail & Related papers (2023-11-30T06:31:56Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Spectrally Multiplexed Hong-Ou-Mandel Interference [18.5051344410089]
We demonstrate spectrally-resolved two-photon "Hong-Ou-Mandel" (HOM) interference.
We also simulate the secret key generation rate using current and state-of-the-art parameters.
arXiv Detail & Related papers (2021-11-26T17:18:15Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.