論文の概要: Adaptive Information Belief Space Planning
- arxiv url: http://arxiv.org/abs/2201.05673v1
- Date: Fri, 14 Jan 2022 21:12:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-22 20:39:29.850476
- Title: Adaptive Information Belief Space Planning
- Title(参考訳): 適応型情報信念空間計画
- Authors: Moran Barenboim and Vadim Indelman
- Abstract要約: 我々は、不確実性に明示的に対処する報酬関数を使用して、情報決定を効率的に行うことに重点を置いている。
期待される情報理論の報奨関数と結果の値関数のバウンダリを導出する。
そこで我々は,計算時間のごく一部で同一の動作選択を実現するために集約を洗練させる手法を提案する。
- 参考スコア(独自算出の注目度): 9.365993173260316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning about uncertainty is vital in many real-life autonomous systems.
However, current state-of-the-art planning algorithms cannot either reason
about uncertainty explicitly, or do so with a high computational burden. Here,
we focus on making informed decisions efficiently, using reward functions that
explicitly deal with uncertainty. We formulate an approximation, namely an
abstract observation model, that uses an aggregation scheme to alleviate
computational costs. We derive bounds on the expected information-theoretic
reward function and, as a consequence, on the value function. We then propose a
method to refine aggregation to achieve identical action selection with a
fraction of the computational time.
- Abstract(参考訳): 不確実性に関する推論は多くの実生活の自律システムにおいて不可欠である。
しかし、現在の最先端の計画アルゴリズムは、不確実性を明確に判断するか、高い計算負荷でそれを実行できない。
ここでは,不確実性を明示的に扱う報酬機能を用いて,インフォームドな意思決定を効率的に行うことに注力する。
計算コストを軽減するためにアグリゲーションスキームを用いた近似、すなわち抽象観測モデルを定式化する。
我々は、期待情報理論的な報酬関数と、その結果、値関数の境界を導出する。
次に,計算時間のごく一部で同一の動作選択を達成するために,集約を洗練する手法を提案する。
関連論文リスト
- Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - MEXGEN: An Effective and Efficient Information Gain Approximation for Information Gathering Path Planning [3.195234044113248]
自律ロボットの計画アルゴリズムは、不確実性の下でのシーケンシャルな意思決定問題を解決する必要がある。
我々は,不確実な信念状態からセンサ計測を予測する難しい問題に対して,計算的に効率的かつ効果的に近似する手法を開発した。
マルチロータ型空中ロボットを用いた広範囲なシミュレーション・フィールド実験により, 電波源追尾と位置決め問題の性能向上を実証した。
論文 参考訳(メタデータ) (2024-05-04T08:09:16Z) - Measurement Simplification in ρ-POMDP with Performance Guarantees [6.129902017281406]
不確実性の下での意思決定は、不完全な情報で行動する自律システムの中心にある。
本稿では,高次元観測空間を分割することで,効率的な意思決定手法を提案する。
境界は適応的で、計算効率が良く、元の解に収束していることが示される。
論文 参考訳(メタデータ) (2023-09-19T15:40:42Z) - On efficient computation in active inference [1.1470070927586016]
計算量を大幅に減らした有限時間地平線に対する新しい計画アルゴリズムを提案する。
また、新規かつ既存のアクティブな推論計画スキームに対して適切な目標分布を設定するプロセスを簡単にする。
論文 参考訳(メタデータ) (2023-07-02T07:38:56Z) - Simplified Continuous High Dimensional Belief Space Planning with
Adaptive Probabilistic Belief-dependent Constraints [9.061408029414453]
部分的に観測可能な領域における不確実性、あるいはBelief Space Planningとしても知られる場合、オンライン意思決定は根本的な問題である。
本稿では,確率論的信念に依存した制約に対して,適応的に行動列を受理あるいは破棄する手法を提案する。
本手法を高次元空間計画の課題であるアクティブSLAMに適用する。
論文 参考訳(メタデータ) (2023-02-13T21:22:47Z) - Planning with Dynamically Estimated Action Costs [2.8326418377665346]
実際のAI計画アプリケーションには、アクションコストに関する情報が不可欠だ。
近年のアプローチでは、データからしばしば学習されるブラックボックス外部アクションコスト推定器が計画段階で適用されている。
本稿では,行動コストを考慮した決定論的計画の一般化を提案する。
論文 参考訳(メタデータ) (2022-06-08T21:10:37Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z) - Exploiting Submodular Value Functions For Scaling Up Active Perception [60.81276437097671]
アクティブな知覚タスクでは、エージェントは1つ以上の隠れ変数の不確実性を減少させる感覚行動を選択することを目的としている。
部分的に観測可能なマルコフ決定過程(POMDP)は、そのような問題に対する自然なモデルを提供する。
エージェントが利用できるセンサーの数が増えるにつれて、POMDP計画の計算コストは指数関数的に増加する。
論文 参考訳(メタデータ) (2020-09-21T09:11:36Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
本稿では,今後の性能予測を最大化するポリシ勾配アルゴリズムを提案する。
我々のアルゴリズムであるPrognosticatorは2つのオンライン適応手法よりも非定常性に頑健であることを示す。
論文 参考訳(メタデータ) (2020-05-17T03:41:19Z) - Options of Interest: Temporal Abstraction with Interest Functions [58.30081828754683]
一般関数近似に適した開始集合の一般化を、オプションに関連付けられた興味関数を定義することによって提供する。
我々は、関心関数に対する勾配に基づく学習アルゴリズムを導出し、新たな関心選択批判的アーキテクチャを創出する。
論文 参考訳(メタデータ) (2020-01-01T21:24:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。