論文の概要: Network Level Spatial Temporal Traffic State Forecasting with Hierarchical Attention LSTM (HierAttnLSTM)
- arxiv url: http://arxiv.org/abs/2201.05760v4
- Date: Sun, 25 Aug 2024 20:43:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 01:37:08.550366
- Title: Network Level Spatial Temporal Traffic State Forecasting with Hierarchical Attention LSTM (HierAttnLSTM)
- Title(参考訳): 階層型アテンションLSTM(HierAttnLSTM)を用いたネットワークレベルの時空間交通状態予測
- Authors: Tianya Terry Zhang,
- Abstract要約: 本稿では,オープンベンチマークにホストされたPeMS(Caltrans Performance Measurement System)から,多様なトラフィック状態データセットを活用する。
我々は,低レベルから高レベルLong Short-Term Memory (LSTM) ネットワーク間のセルおよび隠れ状態とアテンションプーリング機構を統合した。
構築された階層構造は、ネットワークレベルのトラフィック状態の空間的時間的相関をキャプチャして、異なる時間スケールにまたがる依存関係を考慮に入れられるように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic state data, such as speed, volume and travel time collected from ubiquitous traffic monitoring sensors require advanced network level analytics for forecasting and identifying significant traffic patterns. This paper leverages diverse traffic state datasets from the Caltrans Performance Measurement System (PeMS) hosted on the open benchmark and achieved promising performance compared to well recognized spatial-temporal models. Drawing inspiration from the success of hierarchical architectures in various Artificial Intelligence (AI) tasks, we integrate cell and hidden states from low-level to high-level Long Short-Term Memory (LSTM) networks with an attention pooling mechanism, similar to human perception systems. The developed hierarchical structure is designed to account for dependencies across different time scales, capturing the spatial-temporal correlations of network-level traffic states, enabling the prediction of traffic states for all corridors rather than a single link or route. The efficiency of designed attention-based LSTM is analyzed by ablation study. Comparative results with baseline LSTM models demonstrate that the Hierarchical Attention LSTM (HierAttnLSTM) model not only provides higher prediction accuracy but also effectively forecasts unusual congestion patterns. Data and code are made publicly available to support reproducible scientific research.
- Abstract(参考訳): ユビキタス交通監視センサから収集された速度、体積、走行時間などの交通状態データは、重要な交通パターンを予測し識別するための高度なネットワークレベルの分析を必要とする。
本稿では,オープンベンチマークにホストされたPeMS(Caltrans Performance Measurement System)の多様なトラフィック状態データセットを活用し,空間時間モデルと比較して有望な性能を達成した。
さまざまな人工知能(AI)タスクにおける階層的アーキテクチャの成功からインスピレーションを得て,低レベルから高レベルの長短期記憶(LSTM)ネットワークを人間の知覚システムに似た注目プール機構で統合する。
構築された階層構造は、異なる時間スケールの依存関係を考慮し、ネットワークレベルのトラフィック状態の空間的時間的相関をキャプチャし、単一のリンクやルートではなく、すべての廊下におけるトラフィック状態の予測を可能にする。
設計された注意に基づくLSTMの効率をアブレーション研究により解析した。
ベースラインLSTMモデルとの比較により,階層的注意LSTM(HierAttnLSTM)モデルは高い予測精度を提供するだけでなく,異常な混雑パターンを効果的に予測することを示した。
データとコードは、再現可能な科学研究をサポートするために公開されています。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - ST-MLP: A Cascaded Spatio-Temporal Linear Framework with
Channel-Independence Strategy for Traffic Forecasting [47.74479442786052]
時空間グラフニューラルネットワーク(STGNN)に関する現在の研究は、しばしば複雑な設計を優先し、精度をわずかに向上させるだけで計算負荷を発生させる。
マルチ層パーセプトロン(MLP)モジュールと線形層のみをベースとした,簡潔な時空間モデルST-MLPを提案する。
実験の結果,ST-MLPは最先端STGNNと他のモデルよりも精度と計算効率の点で優れていた。
論文 参考訳(メタデータ) (2023-08-14T23:34:59Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Multi model LSTM architecture for Track Association based on Automatic
Identification System Data [2.094022863940315]
トラックアソシエーションのためのLong Short-Term Memory (LSTM) ベースのマルチモデルフレームワークを提案する。
我々は、精度、リコール、F1スコアなどの標準的なパフォーマンス指標を用いて、アプローチのパフォーマンスを評価する。
論文 参考訳(メタデータ) (2023-04-04T03:11:49Z) - A CNN-LSTM Architecture for Marine Vessel Track Association Using
Automatic Identification System (AIS) Data [2.094022863940315]
本研究では,トラックアソシエーションのための1次元CNN-LSTMアーキテクチャに基づくフレームワークを提案する。
提案した枠組みは、自動識別システム(AIS)を介して収集された船舶の位置と動きデータを入力とし、最も可能性の高い船舶軌道をリアルタイムで出力として返す。
論文 参考訳(メタデータ) (2023-03-24T15:26:49Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
LSTM(Long Short-Term Memory)リカレントニューラルネットワークに基づくディープラーニングベースのトラッカーが、強力な代替手段として登場した。
DenseLSTMはResidualおよびRegular LSTMより優れ、ニュアンセに対する高いレジリエンスを提供する。
ケーススタディは、他のトラッカーの堅牢性を高めるために残差ベースRNNの採用を支援する。
論文 参考訳(メタデータ) (2020-06-22T08:20:17Z) - Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network
for Forecasting Network-wide Traffic State with Missing Values [23.504633202965376]
我々は、RNNベースのモデルに注目し、RNNとその変種を交通予測モデルに組み込む方法を再検討する。
トラフィック状態予測のためのニューラルネットワーク構造の設計を支援するために,スタック型双方向・一方向LSTMネットワークアーキテクチャ(SBU-LSTM)を提案する。
また,LSTM構造(LSTM-I)におけるデータ計算機構を提案する。
論文 参考訳(メタデータ) (2020-05-24T00:17:15Z) - Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep
Learning Approach Considering Dynamic Non-Local Spatial Correlation and
Non-Stationary Temporal Dependency [6.019104024723682]
本研究では,交通予測における2つの問題について検討する。(1)交通リンク間の動的・非局所的な空間的相関を捉え,(2)正確な複数ステップの予測を行うための時間依存性のダイナミクスをモデル化する。
本稿では,これらの問題に対処するため,時空間列列モデル(STSeq2Seq)というディープラーニングフレームワークを提案する。
このモデルは、時間的特徴を捉えるためにシーケンスからシーケンス(seq2seq)アーキテクチャに基づいて構築され、空間情報を集約するためのグラフ畳み込みに依存している。
論文 参考訳(メタデータ) (2020-04-06T03:40:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。