論文の概要: Large-Scale Inventory Optimization: A Recurrent-Neural-Networks-Inspired
Simulation Approach
- arxiv url: http://arxiv.org/abs/2201.05868v1
- Date: Sat, 15 Jan 2022 15:06:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-22 11:50:21.085842
- Title: Large-Scale Inventory Optimization: A Recurrent-Neural-Networks-Inspired
Simulation Approach
- Title(参考訳): 大規模在庫最適化:recurrent-neural-networks-inspired simulationアプローチ
- Authors: Tan Wan and L. Jeff Hong
- Abstract要約: 大規模生産ネットワークは、在庫管理の複雑な決定に直面している。
本稿では,既存のシミュレーション手法の数千倍の速度でRNNにインスパイアされたシミュレーション手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many large-scale production networks include thousands types of final
products and tens to hundreds thousands types of raw materials and intermediate
products. These networks face complicated inventory management decisions, which
are often too complicated for inventory models and too large for simulation
models. In this paper, by combing efficient computational tools of recurrent
neural networks (RNN) and the structural information of production networks, we
propose a RNN inspired simulation approach that may be thousands times faster
than existing simulation approach and is capable of solving large-scale
inventory optimization problems in a reasonable amount of time.
- Abstract(参考訳): 多くの大規模生産ネットワークには、数千種類の最終製品と数万から数十万の原材料と中間製品が含まれる。
これらのネットワークは、在庫管理の複雑な決定に直面しており、しばしば在庫モデルには複雑であり、シミュレーションモデルには大きすぎる。
本稿では、リカレントニューラルネットワーク(RNN)の効率的な計算ツールと生産ネットワークの構造情報を組み合わせることで、既存のシミュレーション手法よりも数千倍高速で、適切な時間で大規模在庫最適化問題を解くことができるRNNインスパイアされたシミュレーション手法を提案する。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Graph Convolutional Neural Networks as Surrogate Models for Climate Simulation [0.1884913108327873]
我々は,完全接続型ニューラルネットワーク(FCNN)とグラフ畳み込み型ニューラルネットワーク(GCNN)を活用し,高速なシミュレーションと不確実性定量化を実現する。
我々のサロゲートは、1つのA100 GPUで約310秒で80年シミュレーションしましたが、ESMモデルでは数週間でした。
論文 参考訳(メタデータ) (2024-09-19T14:41:15Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - SparseProp: Efficient Event-Based Simulation and Training of Sparse
Recurrent Spiking Neural Networks [4.532517021515834]
Spiking Neural Networks(SNN)は、生物学的にインスパイアされたモデルであり、アクションポテンシャルのストリームで情報を処理できる。
SparsePropはスパースSNNをシミュレートし、訓練するための新しいイベントベースアルゴリズムである。
論文 参考訳(メタデータ) (2023-12-28T18:48:10Z) - Recurrent neural networks and transfer learning for elasto-plasticity in
woven composites [0.0]
本稿では, 織物のメソスケールシミュレーションの代用として, リカレントニューラルネットワーク(RNN)モデルを提案する。
平均場モデルは、弾塑性挙動を表す包括的データセットを生成する。
シミュレーションでは、任意の6次元ひずみヒストリーを用いて、ランダムウォーキング時の応力を原課題として、循環荷重条件を目標課題として予測する。
論文 参考訳(メタデータ) (2023-11-22T14:47:54Z) - Building a Graph-based Deep Learning network model from captured traffic
traces [4.671648049111933]
技術ネットワークモデルの現状は離散事象シミュレーション(DES)に基づいているか依存している
DESは非常に正確であり、計算コストも高く、並列化も困難であり、高性能ネットワークをシミュレートするには実用的ではない。
我々は,実際のネットワークシナリオの複雑さをより正確に捉えるために,グラフニューラルネットワーク(GNN)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-18T11:16:32Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Dimensionality Reduction in Deep Learning via Kronecker Multi-layer
Architectures [4.836352379142503]
Kronecker積分解の高速行列乗算に基づく新しいディープラーニングアーキテクチャを提案する。
このアーキテクチャにより、ニューラルネットワークのトレーニングと実装が可能になり、計算時間とリソースが大幅に削減されることを示す。
論文 参考訳(メタデータ) (2022-04-08T19:54:52Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。