DeepCreativity: Measuring Creativity with Deep Learning Techniques
- URL: http://arxiv.org/abs/2201.06118v1
- Date: Sun, 16 Jan 2022 19:00:01 GMT
- Title: DeepCreativity: Measuring Creativity with Deep Learning Techniques
- Authors: Giorgio Franceschelli, Mirco Musolesi
- Abstract summary: This paper explores the possibility of using generative learning techniques for automatic assessment of creativity.
We introduce a new measure, namely DeepCreativity, based on Margaret Boden's definition of creativity as composed by value, novelty and surprise.
- Score: 2.5426469613007012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measuring machine creativity is one of the most fascinating challenges in
Artificial Intelligence. This paper explores the possibility of using
generative learning techniques for automatic assessment of creativity. The
proposed solution does not involve human judgement, it is modular and of
general applicability. We introduce a new measure, namely DeepCreativity, based
on Margaret Boden's definition of creativity as composed by value, novelty and
surprise. We evaluate our methodology (and related measure) considering a case
study, i.e., the generation of 19th century American poetry, showing its
effectiveness and expressiveness.
Related papers
- Alien Recombination: Exploring Concept Blends Beyond Human Cognitive Availability in Visual Art [90.8684263806649]
We show how AI can transcend human cognitive limitations in visual art creation.
Our research hypothesizes that visual art contains a vast unexplored space of conceptual combinations.
We present the Alien Recombination method to identify and generate concept combinations that lie beyond human cognitive availability.
arXiv Detail & Related papers (2024-11-18T11:55:38Z) - Creativity in AI: Progresses and Challenges [17.03526787878041]
We study the creative capabilities of AI systems, focusing on creative problem-solving, linguistic, artistic, and scientific creativity.
Our review suggests that while the latest AI models are largely capable of producing linguistically and artistically creative outputs, they struggle with tasks that require creative problem-solving.
We highlight the need for a comprehensive evaluation of creativity that is process-driven and considers several dimensions of creativity.
arXiv Detail & Related papers (2024-10-22T17:43:39Z) - On the stochastics of human and artificial creativity [0.0]
We argue that achieving human-level intelligence in computers requires also human-level creativity.
We develop a statistical representation of human creativity, incorporating prior insights from theory, psychology, philosophy, neuroscience, and chaos theory.
Our analysis includes modern AI algorithms such as reinforcement learning, diffusion models, and large language models, addressing to what extent they measure up to human level creativity.
arXiv Detail & Related papers (2024-03-03T10:38:57Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Art or Artifice? Large Language Models and the False Promise of
Creativity [53.04834589006685]
We propose the Torrance Test of Creative Writing (TTCW) to evaluate creativity as a product.
TTCW consists of 14 binary tests organized into the original dimensions of Fluency, Flexibility, Originality, and Elaboration.
Our analysis shows that LLM-generated stories pass 3-10X less TTCW tests than stories written by professionals.
arXiv Detail & Related papers (2023-09-25T22:02:46Z) - Automatic Creativity Measurement in Scratch Programs Across Modalities [6.242018846706069]
We make the journey fromdefining a formal measure of creativity that is efficientlycomputable to applying the measure in a practical domain.
We adapted the general measure for projects in the popular visual programming language Scratch.
We designed a machine learning model for predicting the creativity of Scratch projects, trained and evaluated on human expert creativity assessments.
arXiv Detail & Related papers (2022-11-07T10:43:36Z) - Towards Creativity Characterization of Generative Models via Group-based
Subset Scanning [64.6217849133164]
We propose group-based subset scanning to identify, quantify, and characterize creative processes.
We find that creative samples generate larger subsets of anomalies than normal or non-creative samples across datasets.
arXiv Detail & Related papers (2022-03-01T15:07:14Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition.
In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning.
CDL has become increasingly popular, where agents are self-motivated to learn novel knowledge.
arXiv Detail & Related papers (2022-01-20T17:07:03Z) - Towards creativity characterization of generative models via group-based
subset scanning [51.84144826134919]
We propose group-based subset scanning to quantify, detect, and characterize creative processes.
Creative samples generate larger subsets of anomalies than normal or non-creative samples across datasets.
arXiv Detail & Related papers (2021-04-01T14:07:49Z) - Creativity of Deep Learning: Conceptualization and Assessment [1.5738019181349994]
We use insights from computational creativity to conceptualize and assess current applications of generative deep learning in creative domains.
We highlight parallels between current systems and different models of human creativity as well as their shortcomings.
arXiv Detail & Related papers (2020-12-03T21:44:07Z) - Creativity in the era of artificial intelligence [1.8275108630751844]
We aim to provide a new perspective on the question of creativity at the era of AI, by blurring the frontier between social and computational sciences.
We argue that the objective of trying to purely mimic human creative traits towards a self-contained ex-nihilo generative machine would be highly counterproductive.
arXiv Detail & Related papers (2020-08-13T15:07:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.