Creativity of Deep Learning: Conceptualization and Assessment
- URL: http://arxiv.org/abs/2012.02282v3
- Date: Sat, 10 Feb 2024 15:23:47 GMT
- Title: Creativity of Deep Learning: Conceptualization and Assessment
- Authors: Marcus Basalla and Johannes Schneider and Jan vom Brocke
- Abstract summary: We use insights from computational creativity to conceptualize and assess current applications of generative deep learning in creative domains.
We highlight parallels between current systems and different models of human creativity as well as their shortcomings.
- Score: 1.5738019181349994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the potential of deep learning (DL) for automating simple tasks is
already well explored, recent research has started investigating the use of
deep learning for creative design, both for complete artifact creation and
supporting humans in the creation process. In this paper, we use insights from
computational creativity to conceptualize and assess current applications of
generative deep learning in creative domains identified in a literature review.
We highlight parallels between current systems and different models of human
creativity as well as their shortcomings. While deep learning yields results of
high value, such as high-quality images, their novelty is typically limited due
to multiple reasons such as being tied to a conceptual space defined by
training data. Current DL methods also do not allow for changes in the internal
problem representation, and they lack the capability to identify connections
across highly different domains, both of which are seen as major drivers of
human creativity.
Related papers
- Creativity and Markov Decision Processes [0.20482269513546453]
We identify formal mappings between Boden's process theory of creativity and Markov Decision Processes (MDPs)
We study three out of eleven mappings in detail to understand which types of creative processes, opportunities foraberrations, and threats to creativity (uninspiration) could be observed in an MDP.
We conclude by discussing quality criteria for the selection of such mappings for future work and applications.
arXiv Detail & Related papers (2024-05-23T18:16:42Z) - On the stochastics of human and artificial creativity [0.0]
We argue that achieving human-level intelligence in computers requires also human-level creativity.
We develop a statistical representation of human creativity, incorporating prior insights from theory, psychology, philosophy, neuroscience, and chaos theory.
Our analysis includes modern AI algorithms such as reinforcement learning, diffusion models, and large language models, addressing to what extent they measure up to human level creativity.
arXiv Detail & Related papers (2024-03-03T10:38:57Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - The Creative Frontier of Generative AI: Managing the Novelty-Usefulness
Tradeoff [0.4873362301533825]
We explore the optimal balance between novelty and usefulness in generative Artificial Intelligence (AI) systems.
Overemphasizing either aspect can lead to limitations such as hallucinations and memorization.
arXiv Detail & Related papers (2023-06-06T11:44:57Z) - Automatic Creativity Measurement in Scratch Programs Across Modalities [6.242018846706069]
We make the journey fromdefining a formal measure of creativity that is efficientlycomputable to applying the measure in a practical domain.
We adapted the general measure for projects in the popular visual programming language Scratch.
We designed a machine learning model for predicting the creativity of Scratch projects, trained and evaluated on human expert creativity assessments.
arXiv Detail & Related papers (2022-11-07T10:43:36Z) - Towards Creativity Characterization of Generative Models via Group-based
Subset Scanning [64.6217849133164]
We propose group-based subset scanning to identify, quantify, and characterize creative processes.
We find that creative samples generate larger subsets of anomalies than normal or non-creative samples across datasets.
arXiv Detail & Related papers (2022-03-01T15:07:14Z) - DeepCreativity: Measuring Creativity with Deep Learning Techniques [2.5426469613007012]
This paper explores the possibility of using generative learning techniques for automatic assessment of creativity.
We introduce a new measure, namely DeepCreativity, based on Margaret Boden's definition of creativity as composed by value, novelty and surprise.
arXiv Detail & Related papers (2022-01-16T19:00:01Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Causal Navigation by Continuous-time Neural Networks [108.84958284162857]
We propose a theoretical and experimental framework for learning causal representations using continuous-time neural networks.
We evaluate our method in the context of visual-control learning of drones over a series of complex tasks.
arXiv Detail & Related papers (2021-06-15T17:45:32Z) - A Neural Dirichlet Process Mixture Model for Task-Free Continual
Learning [48.87397222244402]
We propose an expansion-based approach for task-free continual learning.
Our model successfully performs task-free continual learning for both discriminative and generative tasks.
arXiv Detail & Related papers (2020-01-03T02:07:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.