論文の概要: Temporal Relation Extraction with a Graph-Based Deep Biaffine Attention
Model
- arxiv url: http://arxiv.org/abs/2201.06125v1
- Date: Sun, 16 Jan 2022 19:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-21 10:24:56.475256
- Title: Temporal Relation Extraction with a Graph-Based Deep Biaffine Attention
Model
- Title(参考訳): グラフに基づくディープバイアフィン注意モデルによる時間関係抽出
- Authors: Bo-Ying Su, Shang-Ling Hsu, Kuan-Yin Lai, Amarnath Gupta
- Abstract要約: 本稿では, ディープ・バイファイン・アテンションに基づく新しい時間情報抽出モデルを提案する。
本研究では,時間的関係抽出における最先端性能の実現を実験的に実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal information extraction plays a critical role in natural language
understanding. Previous systems have incorporated advanced neural language
models and have successfully enhanced the accuracy of temporal information
extraction tasks. However, these systems have two major shortcomings. First,
they fail to make use of the two-sided nature of temporal relations in
prediction. Second, they involve non-parallelizable pipelines in inference
process that bring little performance gain. To this end, we propose a novel
temporal information extraction model based on deep biaffine attention to
extract temporal relationships between events in unstructured text efficiently
and accurately. Our model is performant because we perform relation extraction
tasks directly instead of considering event annotation as a prerequisite of
relation extraction. Moreover, our architecture uses Multilayer Perceptrons
(MLP) with biaffine attention to predict arcs and relation labels separately,
improving relation detecting accuracy by exploiting the two-sided nature of
temporal relationships. We experimentally demonstrate that our model achieves
state-of-the-art performance in temporal relation extraction.
- Abstract(参考訳): 時間情報抽出は自然言語理解において重要な役割を果たす。
従来のシステムは高度なニューラルネットワークモデルを導入し、時間情報抽出タスクの精度を向上した。
しかし、これらのシステムには2つの大きな欠点がある。
まず、予測において時間関係の両側的性質を利用することができない。
第2に、非並列化可能なパイプラインを推論プロセスに含み、パフォーマンスがほとんど向上しない。
そこで本研究では,非構造化テキストにおける事象間の時間関係を効率的かつ正確に抽出するために,深いバイアフィンの注意に基づく時間情報抽出モデルを提案する。
我々は,関係抽出の前提条件としてイベントアノテーションを考慮せずに,関係抽出タスクを直接実行する。
さらに,マルチレイヤ・パーセプトロン (MLP) を用いて,時間的関係の両面の性質を利用した関係検出精度を向上し,アークと関係ラベルを別々に予測する。
本研究では,時間的関係抽出における最先端性能を実証した。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Re-Temp: Relation-Aware Temporal Representation Learning for Temporal
Knowledge Graph Completion [11.699431017532367]
補外設定の下での時間的知識グラフ補完(TKGC)は、将来的な事実から欠落した実体を予測することを目的としている。
提案するモデルであるRe-Tempは,明示的な時間的埋め込みを入力として利用し,各タイムスタンプ後のスキップ情報フローを組み込んで,不要な情報を省略して予測する。
我々のモデルは、最近の8つの最先端モデル全てに顕著なマージンで勝っていることを実証する。
論文 参考訳(メタデータ) (2023-10-24T10:58:33Z) - Temporal Smoothness Regularisers for Neural Link Predictors [8.975480841443272]
TNTComplExのような単純な手法は、最先端の手法よりもはるかに正確な結果が得られることを示す。
また,2つの時間的リンク予測モデルに対する幅広い時間的平滑化正規化の影響についても検討した。
論文 参考訳(メタデータ) (2023-09-16T16:52:49Z) - TC-GAT: Graph Attention Network for Temporal Causality Discovery [6.974417592057705]
因果関係はしばしば時間的要素と絡み合っており、原因から効果への進行は瞬間的ではなく、時間的次元において収束している。
本稿では,時間的・因果関係を統合したテキストから因果関係を抽出する手法を提案する。
本稿では,時間的関係に重みを割り当てるグラフアテンション機構を採用し,因果知識グラフを利用して隣接行列を決定する新しいモデルTC-GATを提案する。
論文 参考訳(メタデータ) (2023-04-21T02:26:42Z) - Extracting or Guessing? Improving Faithfulness of Event Temporal
Relation Extraction [87.04153383938969]
本研究では,TempRel抽出モデルの忠実度を2つの観点から改善する。
第1の視点は、文脈記述に基づいて真に抽出することである。
第2の視点は、適切な不確実性評価を提供することである。
論文 参考訳(メタデータ) (2022-10-10T19:53:13Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Extracting Temporal Event Relation with Syntactic-Guided Temporal Graph
Transformer [17.850316385809617]
1文または2文の連続文から構築した構文グラフから2つのイベント間の接続を明示的に見つけるための新しい時相グラフトランスフォーマーネットワークを提案する。
MATRES と TB-Dense データセットを用いた実験により,本手法は時間的関係抽出と時間的関係分類の両方において,従来の最先端手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-04-19T19:00:45Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
時間的知識グラフにおけるリンク予測のためのワンショット学習フレームワークを提案する。
提案手法は,実体間の時間的相互作用を効果的に符号化する自己認識機構を用いる。
実験の結果,提案アルゴリズムは2つのよく研究されたベンチマークにおいて,アートベースラインの状態よりも優れていた。
論文 参考訳(メタデータ) (2020-10-23T03:24:44Z) - Domain Knowledge Empowered Structured Neural Net for End-to-End Event
Temporal Relation Extraction [44.95973272921582]
本稿では,確率的ドメイン知識によって構築された分布制約を持つディープニューラルネットワークを強化するフレームワークを提案する。
ラグランジアン緩和(Lagrangian Relaxation)により制約付き推論問題を解き、終端事象の時間的関係抽出タスクに適用する。
論文 参考訳(メタデータ) (2020-09-15T22:20:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。