論文の概要: Re-Temp: Relation-Aware Temporal Representation Learning for Temporal
Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2310.15722v1
- Date: Tue, 24 Oct 2023 10:58:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 19:08:41.225349
- Title: Re-Temp: Relation-Aware Temporal Representation Learning for Temporal
Knowledge Graph Completion
- Title(参考訳): re-temp:時間知識グラフ完成のための関係認識時間表現学習
- Authors: Kunze Wang, Soyeon Caren Han, Josiah Poon
- Abstract要約: 補外設定の下での時間的知識グラフ補完(TKGC)は、将来的な事実から欠落した実体を予測することを目的としている。
提案するモデルであるRe-Tempは,明示的な時間的埋め込みを入力として利用し,各タイムスタンプ後のスキップ情報フローを組み込んで,不要な情報を省略して予測する。
我々のモデルは、最近の8つの最先端モデル全てに顕著なマージンで勝っていることを実証する。
- 参考スコア(独自算出の注目度): 11.699431017532367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal Knowledge Graph Completion (TKGC) under the extrapolation setting
aims to predict the missing entity from a fact in the future, posing a
challenge that aligns more closely with real-world prediction problems.
Existing research mostly encodes entities and relations using sequential graph
neural networks applied to recent snapshots. However, these approaches tend to
overlook the ability to skip irrelevant snapshots according to entity-related
relations in the query and disregard the importance of explicit temporal
information. To address this, we propose our model, Re-Temp (Relation-Aware
Temporal Representation Learning), which leverages explicit temporal embedding
as input and incorporates skip information flow after each timestamp to skip
unnecessary information for prediction. Additionally, we introduce a two-phase
forward propagation method to prevent information leakage. Through the
evaluation on six TKGC (extrapolation) datasets, we demonstrate that our model
outperforms all eight recent state-of-the-art models by a significant margin.
- Abstract(参考訳): 補外設定の下での時間的知識グラフ補完(TKGC)は、行方不明な実体を将来から予測することを目的としており、現実の予測問題とより密接に一致する課題を呈している。
既存の研究は主に、最近のスナップショットに適用されたシーケンシャルグラフニューラルネットワークを使用してエンティティと関係を符号化している。
しかしながら、これらのアプローチは、クエリにおけるエンティティ関連の関係に従って無関係なスナップショットをスキップする能力を見落とし、明示的な時間的情報の重要性を無視する傾向にある。
そこで本研究では,各タイムスタンプのあとのスキップ情報の流れを取り入れ,明示的な時間的埋め込みを入力として活用するRe-Temp(Relation-Aware Temporal Representation Learning)を提案する。
さらに,情報漏洩を防止するため,二相前方伝播法を提案する。
6つのtkgc(extrapolation)データセットの評価を通じて、このモデルが最新の8つの最先端モデルを上回ることを実証した。
関連論文リスト
- TempME: Towards the Explainability of Temporal Graph Neural Networks via
Motif Discovery [15.573944320072284]
本稿では、時間グラフニューラルネットワーク(TGNN)の予測を導く最も重要な時間的モチーフを明らかにするTempMEを提案する。
TempMEは、最も相互作用に関連するモチーフを抽出し、含んでいる情報の量を最小化し、説明の空間性と簡潔性を維持する。
実験では、TempMEの優位性が検証され、6つの実世界のデータセットで説明精度が最大8.21%向上し、現在のTGNNの平均精度が最大22.96%向上した。
論文 参考訳(メタデータ) (2023-10-30T07:51:41Z) - Temporal Smoothness Regularisers for Neural Link Predictors [8.975480841443272]
TNTComplExのような単純な手法は、最先端の手法よりもはるかに正確な結果が得られることを示す。
また,2つの時間的リンク予測モデルに対する幅広い時間的平滑化正規化の影響についても検討した。
論文 参考訳(メタデータ) (2023-09-16T16:52:49Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
論文 参考訳(メタデータ) (2023-08-29T03:26:38Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
本稿では,逐次時間間隔でサリエンシマップを出力する新たなサリエンシ予測モデルを提案する。
提案手法は,学習した時間マップを組み合わせることで,サリエンシ予測を局所的に調整する。
私たちのコードはGitHubで公開されます。
論文 参考訳(メタデータ) (2023-01-05T22:10:16Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations [1.8262547855491458]
低ランクテンソル分解モデル LowFER のパラメータ効率および時間認識拡張系である Time-LowFER を導入する。
時間を表現するための現在のアプローチのいくつかの制限に留意し、時間特徴に対するサイクル対応の時間符号化方式を提案する。
我々は,時間に敏感なデータ処理に着目した統合時間知識グラフ埋め込みフレームワークに本手法を実装した。
論文 参考訳(メタデータ) (2022-04-10T22:24:11Z) - Temporal Relation Extraction with a Graph-Based Deep Biaffine Attention
Model [0.0]
本稿では, ディープ・バイファイン・アテンションに基づく新しい時間情報抽出モデルを提案する。
本研究では,時間的関係抽出における最先端性能の実現を実験的に実証した。
論文 参考訳(メタデータ) (2022-01-16T19:40:08Z) - Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs [49.6661602019124]
数発のリンク予測を行うため,本手法の現況を一般化したモデルスペクトルについて検討する。
単純なゼロショットベースライン – 関係性固有の情報を無視する – が驚くほど高いパフォーマンスを実現しているのが分かります。
慎重に構築された合成データセットの実験では、関係の例がいくつかあるだけで、モデルがきめ細かな構造情報を使用するのを基本的に制限することが示されている。
論文 参考訳(メタデータ) (2021-02-05T21:04:31Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
時間的知識グラフにおけるリンク予測のためのワンショット学習フレームワークを提案する。
提案手法は,実体間の時間的相互作用を効果的に符号化する自己認識機構を用いる。
実験の結果,提案アルゴリズムは2つのよく研究されたベンチマークにおいて,アートベースラインの状態よりも優れていた。
論文 参考訳(メタデータ) (2020-10-23T03:24:44Z) - Software Engineering Event Modeling using Relative Time in Temporal
Knowledge Graphs [15.22542676866305]
GitHubのアーティファクト間の日々のインタラクションに基づいて,マルチリレーショナルな時間知識グラフを提案する。
補間時間条件リンク予測と,補間時間条件リンク/時間予測クエリの2つの新しいデータセットを提案する。
これらのデータセットに関する我々の実験は、幅広いソフトウェアエンジニアリングの質問に答えるために知識グラフを適用する可能性を浮き彫りにした。
論文 参考訳(メタデータ) (2020-07-02T16:28:43Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。