SunCast: Solar Irradiance Nowcasting from Geosynchronous Satellite Data
- URL: http://arxiv.org/abs/2201.06173v1
- Date: Mon, 17 Jan 2022 01:55:26 GMT
- Title: SunCast: Solar Irradiance Nowcasting from Geosynchronous Satellite Data
- Authors: Dhileeban Kumaresan, Richard Wang, Ernesto Martinez, Richard Cziva,
Alberto Todeschini, Colorado J Reed, Hossein Vahabi
- Abstract summary: We propose a Convolutional Long Short-Term Memory Network model that treats solar nowcasting as a next frame prediction problem.
Our models can predict solar irradiance for entire North America for up to 3 hours in under 60 seconds on a single machine without a GPU.
- Score: 2.285928372124628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When cloud layers cover photovoltaic (PV) panels, the amount of power the
panels produce fluctuates rapidly. Therefore, to maintain enough energy on a
power grid to match demand, utilities companies rely on reserve power sources
that typically come from fossil fuels and therefore pollute the environment.
Accurate short-term PV power prediction enables operators to maximize the
amount of power obtained from PV panels and safely reduce the reserve energy
needed from fossil fuel sources. While several studies have developed machine
learning models to predict solar irradiance at specific PV generation
facilities, little work has been done to model short-term solar irradiance on a
global scale. Furthermore, models that have been developed are proprietary and
have architectures that are not publicly available or rely on computationally
demanding Numerical Weather Prediction (NWP) models. Here, we propose a
Convolutional Long Short-Term Memory Network model that treats solar nowcasting
as a next frame prediction problem, is more efficient than NWP models and has a
straightforward, reproducible architecture. Our models can predict solar
irradiance for entire North America for up to 3 hours in under 60 seconds on a
single machine without a GPU and has a RMSE of 120 W/m2 when evaluated on 2
months of data.
Related papers
- Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Data-driven soiling detection in PV modules [58.6906336996604]
We study the problem of estimating the soiling ratio in photo-voltaic (PV) modules.
A key advantage of our algorithms is that they estimate soiling, without needing to train on labelled data.
Our experimental evaluation shows that we significantly outperform current state-of-the-art methods for estimating soiling ratio.
arXiv Detail & Related papers (2023-01-30T14:35:47Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - Location-aware green energy availability forecasting for multiple time
frames in smart buildings: The case of Estonia [0.5156484100374058]
This research aims to forecast PV system output power based on weather and derived features using different machine learning models.
The objective is to obtain the best-fitting model to precisely predict output power by inspecting the data.
arXiv Detail & Related papers (2022-10-04T14:02:43Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
Currently the UK Electric market is guided by load (demand) forecasts published every thirty minutes by the regulator.
We present HYENA: a hybrid predictive model that combines feature engineering (selection of the candidate predictor features), mobile-window predictors and LSTM encoder-decoders.
arXiv Detail & Related papers (2022-05-20T22:13:25Z) - Feature Construction and Selection for PV Solar Power Modeling [1.8960797847221296]
Building a model to predict photovoltaic (PV) power generation allows decision-makers to hedge energy shortages.
The solar power output is time-series data dependent on many factors, such as irradiance and weather.
A machine learning framework for 1-hour ahead solar power prediction is developed in this paper based on the historical data.
arXiv Detail & Related papers (2022-02-13T06:49:28Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
We develop a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning.
Our model estimates a location's future solar irradiance based on satellite observations.
We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites.
arXiv Detail & Related papers (2021-12-28T03:13:44Z) - PVNet: A LRCN Architecture for Spatio-Temporal Photovoltaic
PowerForecasting from Numerical Weather Prediction [2.913033886371052]
We introduce a Long-Term Recurrent Convolutional Network using Numerical Weather Predictions (NWP) to predict, in turn, PV production in the 24-hour and 48-hour forecast horizons.
We train our model on an NWP dataset from the National Oceanic and Atmospheric Administration (NOAA) to predict spatially aggregated PV production in Germany.
arXiv Detail & Related papers (2019-02-04T20:30:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.