論文の概要: Automatic Segmentation of Head and Neck Tumor: How Powerful Transformers
Are?
- arxiv url: http://arxiv.org/abs/2201.06251v1
- Date: Mon, 17 Jan 2022 07:31:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 15:08:50.198560
- Title: Automatic Segmentation of Head and Neck Tumor: How Powerful Transformers
Are?
- Title(参考訳): 頭頸部腫瘍の自動切開:トランスフォーマーはいかに強力か?
- Authors: Ikboljon Sobirov, Otabek Nazarov, Hussain Alasmawi, and Mohammad Yaqub
- Abstract要約: 我々は,H&N腫瘍を自動デライン化するための視覚変換器を用いた手法を開発した。
我々は、その結果をCNNベースのモデルと比較する。
選択した変換器ベースモデルにより,CNNベースモデルと同等の結果が得られることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cancer is one of the leading causes of death worldwide, and head and neck
(H&N) cancer is amongst the most prevalent types. Positron emission tomography
and computed tomography are used to detect and segment the tumor region.
Clinically, tumor segmentation is extensively time-consuming and prone to
error. Machine learning, and deep learning in particular, can assist to
automate this process, yielding results as accurate as the results of a
clinician. In this research study, we develop a vision transformers-based
method to automatically delineate H&N tumor, and compare its results to leading
convolutional neural network (CNN)-based models. We use multi-modal data of CT
and PET scans to do this task. We show that the selected transformer-based
model can achieve results on a par with CNN-based ones. With cross validation,
the model achieves a mean dice similarity coefficient of 0.736, mean precision
of 0.766 and mean recall of 0.766. This is only 0.021 less than the 2020
competition winning model in terms of the DSC score. This indicates that the
exploration of transformer-based models is a promising research area.
- Abstract(参考訳): がんは世界有数の死因の1つであり、頭頸部がん(h&n cancer)は最も一般的ながんの1つである。
ポジトロン・エミッション・トモグラフィとctは腫瘍領域の検出と分画に使用される。
臨床的には、腫瘍の分節は広範囲に時間がかかり、エラーを起こしやすい。
機械学習、特にディープラーニングは、このプロセスを自動化し、臨床医の結果と同じ精度で結果を得ることができる。
本研究では,h&n腫瘍を自動的に診断する視覚トランスフォーマー(vision transformers)に基づく手法を開発し,その結果をcnn(leading convolutional neural network)モデルと比較する。
我々はCTとPETのマルチモーダルデータを用いてこの処理を行う。
選択したトランスモデルにより,CNNモデルと同等の結果が得られることを示す。
交差検証により、平均サイコロ類似度係数は0.736、平均精度は0.766、平均リコールは0.766となる。
これはdscスコアの点で2020年の優勝モデルよりわずか0.021少ない。
これはトランスフォーマーモデルの研究が有望な研究領域であることを示している。
関連論文リスト
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
本研究は, 小児および思春期において最も多い骨癌である骨肉腫(OS)に焦点を当て, 腕と足の長い骨に影響を及ぼす。
我々は、OSの診断精度を向上させるために、畳み込みニューラルネットワーク(CNN)と視覚変換器(ViT)を組み合わせた新しいハイブリッドモデルを提案する。
このモデルは精度99.08%、精度99.10%、リコール99.28%、F1スコア99.23%を達成した。
論文 参考訳(メタデータ) (2024-10-29T13:54:08Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model [1.0994755279455526]
本研究では、トランスフォーマーと畳み込みニューラルネットワーク(CNN)の利点を組み合わせて分類性能を向上させるハイブリッドモデルを提案する。
GastroVisionデータセットでは,精度,リコール,F1スコア,精度,マシューズ相関係数(MCC)が0.8320,0.8386,0.8324,0.8386,0.8191であった。
論文 参考訳(メタデータ) (2024-08-20T11:05:32Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
この研究は、MRIとグラフニューラルネットワーク(GNN)の進歩を生かして、効率的な脳腫瘍要約モデルを導入する。
このモデルは、ボリュームMRIを領域隣接グラフ(RAG)として表現し、グラフ注意ネットワーク(GAT)を通して腫瘍の種類を特定することを学習する。
論文 参考訳(メタデータ) (2023-02-11T04:30:40Z) - A Novel Mask R-CNN Model to Segment Heterogeneous Brain Tumors through
Image Subtraction [0.0]
画像セグメンテーション(画像セグメンテーション)と呼ばれる放射線学者による手法を用いて機械学習モデルに適用し,より優れたセグメンテーションを証明した。
Mask R-CNNは、RSNA肺炎検出チャレンジデータセットで事前トレーニングされたResNetバックボーンであり、Brats 2020 Brain tumorデータセットでモデルをトレーニングすることができる。
DICE係数(F1スコア)、リコール、未タッチテストセットの精度による画像サブトラクションを伴わないモデルと比較することにより、画像サブトラクションの手法がいかにうまく機能するかを確認できる。
論文 参考訳(メタデータ) (2022-04-04T01:45:11Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Comparison of different CNNs for breast tumor classification from
ultrasound images [12.98780709853981]
超音波画像から良性腫瘍と悪性腫瘍を分類することは重要であるが困難な課題である。
乳腺腫瘍自動分類の課題として,様々な畳み込みニューラルネットワーク(cnns)と転送学習法を比較した。
最高の性能は、精度0.919とauc0.934のvgg-16の微調整によって得られた。
論文 参考訳(メタデータ) (2020-12-28T22:54:08Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
本稿では,GAN(Cycle-Consistency Generative Adversarial Networks)を用いた医用画像生成のためのデータ拡張手法を提案する。
提案モデルでは,正常画像から腫瘍画像を生成することができ,腫瘍画像から正常画像を生成することもできる。
本研究では,従来のデータ拡張手法と合成画像を用いた分類モデルを用いて,実画像を用いた分類モデルを訓練する。
論文 参考訳(メタデータ) (2020-11-15T14:01:24Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。