論文の概要: Probabilistic Alternatives to the Gower Distance: A Note on Deodata
Predictors
- arxiv url: http://arxiv.org/abs/2201.06355v1
- Date: Mon, 17 Jan 2022 11:35:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-01-21 03:10:55.958296
- Title: Probabilistic Alternatives to the Gower Distance: A Note on Deodata
Predictors
- Title(参考訳): ガウワー距離の確率論的代替:デオデータ予測器について
- Authors: Cristian Alb
- Abstract要約: ガウワー距離の確率的代替案が提案されている。
確率距離は、一般的なデオデータ予測器の実現を可能にする。
特に、距離は一般的なデオデータ予測器の実現を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A probabilistic alternative to the Gower distance is proposed. The
probabilistic distance enables the realization of a generic deodata predictor.
- Abstract(参考訳): ガウワー距離の確率的代替法を提案する。
確率距離は、一般的なデオデータ予測器の実現を可能にする。
関連論文リスト
- Tackling Missing Values in Probabilistic Wind Power Forecasting: A
Generative Approach [1.384633930654651]
そこで本研究では,欠落した値の処理と目標の予測を無関心に行い,未知の値を同時に予測することを提案する。
従来の「インプット、予測」パイプラインと比較して、提案手法は連続的なランク付け確率スコアにおいてより良い性能を達成する。
論文 参考訳(メタデータ) (2024-03-06T11:38:08Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Algorithmic Information Forecastability [0.0]
予測可能性の度合いはデータのみの機能です
常に正確である予測のオラクル予測可能性 限界までエラーの正確な予測可能性 他の予測の確率予測性
論文 参考訳(メタデータ) (2023-04-21T05:45:04Z) - Creating Probabilistic Forecasts from Arbitrary Deterministic Forecasts
using Conditional Invertible Neural Networks [0.19573380763700712]
我々は、条件付き可逆ニューラルネットワーク(cINN)を用いて、データの基盤となる分布を学習し、この分布からの不確実性を任意の決定論的予測と組み合わせる。
我々のアプローチは、複雑な統計的損失関数やさらなる仮定を伴わずに、確率的予測を簡単に作成できる。
論文 参考訳(メタデータ) (2023-02-03T15:11:39Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Cyclist Intention Detection: A Probabilistic Approach [2.984037222955095]
本稿では,確率的サイクリスト意図検出のための包括的アプローチを提案する。
運動履歴画像(MHI)と残差畳み込みニューラルネットワーク(ResNet)に基づく基本的な動き検出を用いて、現在のサイクリスト運動状態の確率を推定する。
これらの確率は確率的アンサンブル軌道予測の重みとして用いられる。
論文 参考訳(メタデータ) (2021-04-19T09:59:04Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。