Who supervises the supervisor? Model monitoring in production using deep
feature embeddings with applications to workpiece inspection
- URL: http://arxiv.org/abs/2201.06599v1
- Date: Mon, 17 Jan 2022 19:25:33 GMT
- Title: Who supervises the supervisor? Model monitoring in production using deep
feature embeddings with applications to workpiece inspection
- Authors: Michael Banf and Gregor Steinhagen
- Abstract summary: Machine learning has led to vast improvements in the area of autonomous process supervision.
One of the main challenges is the monitoring of live deployments of these machine learning systems.
We propose an unsupervised framework that acts on top of a supervised classification system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The automation of condition monitoring and workpiece inspection plays an
essential role in maintaining high quality as well as high throughput of the
manufacturing process. To this end, the recent rise of developments in machine
learning has lead to vast improvements in the area of autonomous process
supervision. However, the more complex and powerful these models become, the
less transparent and explainable they generally are as well. One of the main
challenges is the monitoring of live deployments of these machine learning
systems and raising alerts when encountering events that might impact model
performance. In particular, supervised classifiers are typically build under
the assumption of stationarity in the underlying data distribution. For
example, a visual inspection system trained on a set of material surface
defects generally does not adapt or even recognize gradual changes in the data
distribution - an issue known as "data drift" - such as the emergence of new
types of surface defects. This, in turn, may lead to detrimental
mispredictions, e.g. samples from new defect classes being classified as
non-defective. To this end, it is desirable to provide real-time tracking of a
classifier's performance to inform about the putative onset of additional error
classes and the necessity for manual intervention with respect to classifier
re-training. Here, we propose an unsupervised framework that acts on top of a
supervised classification system, thereby harnessing its internal deep feature
representations as a proxy to track changes in the data distribution during
deployment and, hence, to anticipate classifier performance degradation.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - Continuous Test-time Domain Adaptation for Efficient Fault Detection under Evolving Operating Conditions [10.627285023764086]
We propose a Test-time domain Adaptation Anomaly Detection (TAAD) framework that separates input variables into system parameters and measurements.
Our approach, tested on a real-world pump monitoring dataset, shows significant improvements over existing domain adaptation methods in fault detection.
arXiv Detail & Related papers (2024-06-06T15:53:14Z) - Pseudo Replay-based Class Continual Learning for Online New Category Anomaly Detection in Advanced Manufacturing [5.012204041812572]
This paper develops a novel pseudo replay-based continual learning framework.
It integrates class incremental learning and oversampling-based data generation.
The effectiveness of the proposed framework is validated in three cases studies.
arXiv Detail & Related papers (2023-12-05T04:43:23Z) - FaultFormer: Pretraining Transformers for Adaptable Bearing Fault Classification [7.136205674624813]
We present a novel self-supervised pretraining and fine-tuning framework based on transformer models.
In particular, we investigate different tokenization and data augmentation strategies to reach state-of-the-art accuracies.
This introduces a new paradigm where models can be pretrained on unlabeled data from different bearings, faults, and machinery and quickly deployed to new, data-scarce applications.
arXiv Detail & Related papers (2023-12-04T22:51:02Z) - A Novel Strategy for Improving Robustness in Computer Vision
Manufacturing Defect Detection [1.3198689566654107]
Visual quality inspection in high performance manufacturing can benefit from automation, due to cost savings and improved rigor.
Deep learning techniques are the current state of the art for generic computer vision tasks like classification and object detection.
Manufacturing data can pose a challenge for deep learning because data is highly repetitive and there are few images of defects or deviations to learn from.
arXiv Detail & Related papers (2023-05-16T12:51:51Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
We propose a model fusing weak supervision and generative adversarial networks.
It captures discrete variables in the data alongside the weak supervision derived label estimate.
It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels.
arXiv Detail & Related papers (2022-03-22T20:24:21Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
In practice, it may make sense to ignore benign shifts, under which the performance of a deployed model does not degrade substantially.
We argue that a sensible method for firing off a warning has to both (a) detect harmful shifts while ignoring benign ones, and (b) allow continuous monitoring of model performance without increasing the false alarm rate.
arXiv Detail & Related papers (2021-10-12T17:21:41Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
We propose a simple but effective debiasing technique in an unsupervised manner.
We perform clustering on the feature embedding space and identify pseudoattributes by taking advantage of the clustering results.
We then employ a novel cluster-based reweighting scheme for learning debiased representation.
arXiv Detail & Related papers (2021-08-06T05:20:46Z) - Building an Automated and Self-Aware Anomaly Detection System [0.0]
It can be challenging to proactively monitor a large number of diverse and constantly changing time series for anomalies.
Traditionally, variations in the data generation processes and patterns have required strong modeling expertise to create models that accurately flag anomalies.
In this paper, we describe an anomaly detection system that overcomes this common challenge by keeping track of its own performance and making changes as necessary to each model without requiring manual intervention.
arXiv Detail & Related papers (2020-11-10T11:19:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.