Continuous Test-time Domain Adaptation for Efficient Fault Detection under Evolving Operating Conditions
- URL: http://arxiv.org/abs/2406.06607v1
- Date: Thu, 6 Jun 2024 15:53:14 GMT
- Title: Continuous Test-time Domain Adaptation for Efficient Fault Detection under Evolving Operating Conditions
- Authors: Han Sun, Kevin Ammann, Stylianos Giannoulakis, Olga Fink,
- Abstract summary: We propose a Test-time domain Adaptation Anomaly Detection (TAAD) framework that separates input variables into system parameters and measurements.
Our approach, tested on a real-world pump monitoring dataset, shows significant improvements over existing domain adaptation methods in fault detection.
- Score: 10.627285023764086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault detection is crucial in industrial systems to prevent failures and optimize performance by distinguishing abnormal from normal operating conditions. Data-driven methods have been gaining popularity for fault detection tasks as the amount of condition monitoring data from complex industrial systems increases. Despite these advances, early fault detection remains a challenge under real-world scenarios. The high variability of operating conditions and environments makes it difficult to collect comprehensive training datasets that can represent all possible operating conditions, especially in the early stages of system operation. Furthermore, these variations often evolve over time, potentially leading to entirely new data distributions in the future that were previously unseen. These challenges prevent direct knowledge transfer across different units and over time, leading to the distribution gap between training and testing data and inducing performance degradation of those methods in real-world scenarios. To overcome this, our work introduces a novel approach for continuous test-time domain adaptation. This enables early-stage robust anomaly detection by addressing domain shifts and limited data representativeness issues. We propose a Test-time domain Adaptation Anomaly Detection (TAAD) framework that separates input variables into system parameters and measurements, employing two domain adaptation modules to independently adapt to each input category. This method allows for effective adaptation to evolving operating conditions and is particularly beneficial in systems with scarce data. Our approach, tested on a real-world pump monitoring dataset, shows significant improvements over existing domain adaptation methods in fault detection, demonstrating enhanced accuracy and reliability.
Related papers
- Condition Monitoring with Incomplete Data: An Integrated Variational Autoencoder and Distance Metric Framework [2.7898966850590625]
This paper introduces a new method for fault detection and condition monitoring for unseen data.
We use a variational autoencoder to capture the probabilistic distribution of previously seen and new unseen conditions.
Faults are detected by establishing a threshold for the health indexes, allowing the model to identify severe, unseen faults with high accuracy, even amidst noise.
arXiv Detail & Related papers (2024-04-08T22:20:23Z) - Revisiting VAE for Unsupervised Time Series Anomaly Detection: A
Frequency Perspective [40.21603048003118]
Variational Autoencoders (VAEs) have gained popularity in recent decades due to their superior de-noising capabilities.
FCVAE exploits an innovative approach to concurrently integrate both the global and local frequency features into the condition of Conditional Variational Autoencoder (CVAE)
Our approach has been evaluated on public datasets and a large-scale cloud system, and the results demonstrate that it outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T09:06:57Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Effective Restoration of Source Knowledge in Continual Test Time
Adaptation [44.17577480511772]
This paper introduces an unsupervised domain change detection method that is capable of identifying domain shifts in dynamic environments.
By restoring the knowledge from the source, it effectively corrects the negative consequences arising from the gradual deterioration of model parameters.
We perform extensive experiments on benchmark datasets to demonstrate the superior performance of our method compared to state-of-the-art adaptation methods.
arXiv Detail & Related papers (2023-11-08T19:21:48Z) - Better Practices for Domain Adaptation [62.70267990659201]
Domain adaptation (DA) aims to provide frameworks for adapting models to deployment data without using labels.
Unclear validation protocol for DA has led to bad practices in the literature.
We show challenges across all three branches of domain adaptation methodology.
arXiv Detail & Related papers (2023-09-07T17:44:18Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Real-Time Outlier Detection with Dynamic Process Limits [0.609170287691728]
This paper proposes an online anomaly detection algorithm for existing real-time infrastructures.
Online inverse cumulative distribution-based approach is introduced to eliminate common problems of offline anomaly detectors.
The benefit of the proposed method is the ease of use, fast computation, and deployability as shown in two case studies of real microgrid operation data.
arXiv Detail & Related papers (2023-01-31T10:23:02Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Data-driven Residual Generation for Early Fault Detection with Limited
Data [4.129225533930966]
In many complex systems it is not feasible to develop highly accurate models for the systems.
Data-driven solutions have received an immense attention in the industries systems for several practical reasons.
Unlike the model-based methods it is straight forward to combine time series measurements such as pressure and voltage with other sources of information.
arXiv Detail & Related papers (2021-09-28T03:18:03Z) - Unsupervised Out-of-Domain Detection via Pre-trained Transformers [56.689635664358256]
Out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues.
Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data.
Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy.
arXiv Detail & Related papers (2021-06-02T05:21:25Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.