Fast quantum state transfer and entanglement for cavity-coupled many
qubits via dark pathways
- URL: http://arxiv.org/abs/2201.06810v1
- Date: Tue, 18 Jan 2022 08:29:35 GMT
- Title: Fast quantum state transfer and entanglement for cavity-coupled many
qubits via dark pathways
- Authors: Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue
- Abstract summary: Quantum state transfer (QST) and entangled state generation (ESG) are important building blocks for modern quantum information processing.
We propose a general method to realize high-fidelity fast QST and ESG in a cavity-coupled many qubits system via its dark pathways.
- Score: 1.8352113484137624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state transfer (QST) and entangled state generation (ESG) are
important building blocks for modern quantum information processing. To achieve
these tasks, convention wisdom is to consult the quantum adiabatic evolution,
which is time-consuming, and thus is of low fidelity. Here, using the shortcut
to adiabaticity technique, we propose a general method to realize high-fidelity
fast QST and ESG in a cavity-coupled many qubits system via its dark pathways,
which can be further designed for high-fidelity quantum tasks with different
optimization purpose. Specifically, with a proper dark pathway, QST and ESG
between any two qubits can be achieved without decoupling the others, which
simplifies experimental demonstrations. Meanwhile, ESG among all qubits can
also be realized in a single step. In addition, our scheme can be implemented
in many quantum systems, and we illustrate its implementation on
superconducting quantum circuits. Therefore, we propose a powerful strategy for
selective quantum manipulation, which is promising in cavity coupled quantum
systems and could find many convenient applications in quantum information
processing.
Related papers
- Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System [2.646968944595457]
discrete-time quantum walk (DTQW) model one of most suitable choices for circuit implementation.
In this paper, we have successfully cut down the circuit cost concerning gate count and circuit depth by half.
For the engineering excellence of our proposed approach, we implement DTQW in any finite-dimensional quantum system with akin efficiency.
arXiv Detail & Related papers (2024-08-01T13:07:13Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Hole Flying Qubits in Quantum Dot Arrays [1.0446041735532203]
We show that electric field manipulation allows dynamical control of the SOI, enabling simultaneously the implementation of quantum gates during the transfer.
We employ dynamical decoupling schemes to focus and preserve the spin state, leading to higher transfer fidelity.
arXiv Detail & Related papers (2023-12-07T19:00:02Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Noncyclic nonadiabatic holonomic quantum gates via shortcuts to
adiabaticity [5.666193021459319]
We propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum systems via shortcuts to adiabaticity.
Our scheme is readily realizable in physical system currently pursued for implementation of quantum computation.
arXiv Detail & Related papers (2021-05-28T15:23:24Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.