論文の概要: Mining Fine-grained Semantics via Graph Neural Networks for
Evidence-based Fake News Detection
- arxiv url: http://arxiv.org/abs/2201.06885v1
- Date: Tue, 18 Jan 2022 11:28:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 13:31:21.143329
- Title: Mining Fine-grained Semantics via Graph Neural Networks for
Evidence-based Fake News Detection
- Title(参考訳): Evidence-based Fake News Detectionのためのグラフニューラルネットワークによるきめ細かいセマンティクスのマイニング
- Authors: Weizhi Xu, Junfei Wu, Qiang Liu, Shu Wu, Liang Wang
- Abstract要約: 本稿では,グラフベースのsEmantic sTructureマイニングフレームワークを提案する。
我々は、クレームとエビデンスをグラフ構造化データとしてモデル化し、長距離セマンティック依存関係をキャプチャします。
文脈意味情報を得た後、グラフ構造学習を行うことにより、情報冗長性を低減する。
- 参考スコア(独自算出の注目度): 20.282527436527765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prevalence and perniciousness of fake news has been a critical issue on
the Internet, which stimulates the development of automatic fake news detection
in turn. In this paper, we focus on the evidence-based fake news detection,
where several evidences are utilized to probe the veracity of news (i.e., a
claim). Most previous methods first employ sequential models to embed the
semantic information and then capture the claim-evidence interaction based on
different attention mechanisms. Despite their effectiveness, they still suffer
from two main weaknesses. Firstly, due to the inherent drawbacks of sequential
models, they fail to integrate the relevant information that is scattered far
apart in evidences for veracity checking. Secondly, they neglect much redundant
information contained in evidences that may be useless or even harmful. To
solve these problems, we propose a unified Graph-based sEmantic sTructure
mining framework, namely GET in short. Specifically, different from the
existing work that treats claims and evidences as sequences, we model them as
graph-structured data and capture the long-distance semantic dependency among
dispersed relevant snippets via neighborhood propagation. After obtaining
contextual semantic information, our model reduces information redundancy by
performing graph structure learning. Finally, the fine-grained semantic
representations are fed into the downstream claim-evidence interaction module
for predictions. Comprehensive experiments have demonstrated the superiority of
GET over the state-of-the-arts.
- Abstract(参考訳): 偽ニュースの拡散と有害性は、インターネット上で重大な問題であり、偽ニュースの自動検出の開発を後押ししている。
本稿では,証拠に基づく偽ニュース検出に焦点をあて,複数の証拠を用いてニュースの正確性(すなわちクレーム)を調査する。
従来のほとんどの手法は、まずシーケンシャルモデルを用いて意味情報を埋め込み、異なる注意機構に基づいてクレームと証拠の相互作用をキャプチャする。
効果はあるものの、2つの大きな弱点に悩まされている。
第一に、シーケンシャルなモデルの固有の欠点のために、彼らは検証の証拠にバラバラに散在している関連する情報を統合できない。
第二に、彼らは役に立たない、あるいは有害な証拠に含まれる多くの冗長な情報を無視する。
これらの問題を解決するために,グラフベースのsEmantic sTructureマイニングフレームワークを提案する。
具体的には,クレームやエビデンスをシーケンスとして扱う既存の作業とは違って,それらをグラフ構造データとしてモデル化し,近所の伝播を通じて分散した関連スニペット間の長距離的意味依存性を捉える。
文脈意味情報を得た後、グラフ構造学習によって情報冗長性を低減する。
最後に、細粒度のセマンティック表現は、予測のために下流のクレーム-エビデンス相互作用モジュールに入力される。
包括的な実験は、最先端技術よりもGETの方が優れていることを示した。
関連論文リスト
- Missci: Reconstructing Fallacies in Misrepresented Science [84.32990746227385]
ソーシャルネットワーク上の健康関連の誤報は、意思決定の貧弱さと現実世界の危険につながる可能性がある。
ミスシは、誤った推論のための新しい議論理論モデルである。
大規模言語モデルの批判的推論能力をテストするためのデータセットとしてMissciを提案する。
論文 参考訳(メタデータ) (2024-06-05T12:11:10Z) - Heterogeneous Graph Reasoning for Fact Checking over Texts and Tables [22.18384189336634]
HeterFCは、非構造化情報および構造化情報に対するFact Checkingのための単語レベルの不均一グラフベースのモデルである。
我々は,レーショナルグラフニューラルネットワークによる情報伝達,クレームとエビデンス間の相互作用を行う。
本稿では,エビデンス検索における潜在的な不正確性を考慮したマルチタスク損失関数を提案する。
論文 参考訳(メタデータ) (2024-02-20T14:10:40Z) - MSynFD: Multi-hop Syntax aware Fake News Detection [27.046529059563863]
ソーシャルメディアプラットフォームは、偽ニュースを急速に拡散させ、われわれの現実社会に脅威を与えている。
既存の方法は、フェイクニュースの検出を強化するために、マルチモーダルデータまたはコンテキスト情報を使用する。
本稿では,偽ニュースの微妙なひねりに対処するための補完構文情報を含む,新しいマルチホップ構文認識型偽ニュース検出手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T05:40:33Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Adversarial Contrastive Learning for Evidence-aware Fake News Detection
with Graph Neural Networks [20.282527436527765]
本稿では,Contrastive Learning,すなわちGETRALを用いたグラフベースのsEmantic構造マイニングフレームワークを提案する。
まず、グラフ構造化データとしてクレームとエビデンスをモデル化し、長距離セマンティック依存関係をキャプチャします。
次に、詳細なセマンティック表現をクレーム-エビデンス相互作用モジュールに入力して予測を行う。
論文 参考訳(メタデータ) (2022-10-11T14:54:37Z) - A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for
Explainable Fake News Detection [15.517424861844317]
既存のフェイクニュース検出手法は、ニュースの一部を真または偽と分類し、説明を提供することを目的としており、優れたパフォーマンスを達成している。
あるニュースが事実確認され、あるいは公表されていない場合、関連する生のレポートは、通常、様々なメディアに散発的に配信される。
そこで本稿では, 偽ニュース検出のためのニューラルネットワークCofCED(Coarse-to-fine Cascaded Evidence-Distillation)を提案する。
論文 参考訳(メタデータ) (2022-09-29T09:05:47Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
異種情報ソース上での自己教師型学習を対照的に提案し,それらの関係を明らかにするとともに,噂をよりよく特徴付ける。
我々はこの枠組みをSRD(Self-supervised Rumor Detection)と呼ぶ。
3つの実世界のデータセットに対する大規模な実験により、ソーシャルメディア上での噂の自動検出におけるSRDの有効性が検証された。
論文 参考訳(メタデータ) (2022-04-19T12:10:03Z) - An Adversarial Benchmark for Fake News Detection Models [0.065268245109828]
我々は「理解」の3つの側面を狙う敵攻撃を定式化する
我々は、LIAR arXiv:arch-ive/1705648とKaggle Fake-Newsデータセットで微調整されたBERT分類器を用いてベンチマークをテストする。
論文 参考訳(メタデータ) (2022-01-03T23:51:55Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。