Classifying the non-time-local and entangling dynamics of an open qubit
system
- URL: http://arxiv.org/abs/2201.07080v2
- Date: Fri, 16 Dec 2022 19:26:39 GMT
- Title: Classifying the non-time-local and entangling dynamics of an open qubit
system
- Authors: Sean Prudhoe and Sarah Shandera
- Abstract summary: We study families of dynamical maps generated from interactions with varying degrees of symmetry.
For a family of time-independent Hamiltonians, we demonstrate the relationship between symmetry, strong-coupling, perfect entanglers, non-Markovian features, and non-time-locality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study families of dynamical maps generated from interactions with varying
degrees of symmetry. For a family of time-independent Hamiltonians, we
demonstrate the relationship between symmetry, strong-coupling, perfect
entanglers, non-Markovian features, and non-time-locality. We show that by
perturbing the initial environment state, effective time-local descriptions can
be obtained that are non-singular yet capture essential non-unitary features of
the reduced dynamics. We then consider a time-dependent Hamiltonian that
changes the degree of symmetry by activating a dormant degree of freedom. In
this example we find that the one-qubit reduced dynamics changes dramatically.
These results can inform the construction of effective theories of open systems
when the larger system dynamics is unknown.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Coarse-Graining Hamiltonian Systems Using WSINDy [0.0]
We show that WSINDy can successfully identify a reduced Hamiltonian system in the presence of large intrinsics.
WSINDy naturally preserves the Hamiltonian structure by restricting to a trial basis of Hamiltonian vector fields.
We also provide a contribution to averaging theory by proving that first-order averaging at the level of vector fields preserves Hamiltonian structure in nearly-periodic Hamiltonian systems.
arXiv Detail & Related papers (2023-10-09T17:20:04Z) - Statics and Dynamics of non-Hermitian Many-Body Localization [0.0]
Many-body localized phases retain memory of their initial conditions in disordered interacting systems.
We focus on the interacting Hatano-Nelson model which breaks unitarity via asymmetric hopping.
Our findings suggest the possibility of an intermediate dynamical regime in disordered open systems.
arXiv Detail & Related papers (2023-01-04T18:58:17Z) - Wave-packet and entanglement dynamics in a non-Hermitian many-body
system [0.0]
A one-dimensional quantum system described by a non-Hermitian Hamiltonian of the so-called Hatano-Nelson type is studied.
Effects of disorder and inter-particle interaction, especially, when they coexist, may be less understood.
arXiv Detail & Related papers (2022-12-02T06:47:18Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Adiabatic Lindbladian Evolution with Small Dissipators [0.0]
We consider a time-dependent small quantum system weakly coupled to an environnement.
We assume the Hamiltonian part of the Lindbladian is slowly varying in time and the dissipator part has small amplitude.
arXiv Detail & Related papers (2021-06-29T22:58:39Z) - Quantum many-body attractors [0.0]
We discuss how an extensive set of strictly local dynamical symmetries can exist in a quantum system.
These strictly local symmetries lead to spontaneous breaking of continuous time-translation symmetry.
We provide an explicit recipe for constructing Hamiltonians featuring local dynamical symmetries.
arXiv Detail & Related papers (2020-08-25T16:52:47Z) - Time-Reversal Symmetric ODE Network [138.02741983098454]
Time-reversal symmetry is a fundamental property that frequently holds in classical and quantum mechanics.
We propose a novel loss function that measures how well our ordinary differential equation (ODE) networks comply with this time-reversal symmetry.
We show that, even for systems that do not possess the full time-reversal symmetry, TRS-ODENs can achieve better predictive performances over baselines.
arXiv Detail & Related papers (2020-07-22T12:19:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.