Magnetic slowdown of topological edge states
- URL: http://arxiv.org/abs/2201.07133v1
- Date: Tue, 18 Jan 2022 17:15:24 GMT
- Title: Magnetic slowdown of topological edge states
- Authors: Guillaume Bal, Simon Becker, and Alexis Drouot
- Abstract summary: We study the propagation of wavepackets along curved interfaces between topological, magnetic materials.
We construct semiclassical wavepackets propagating along the curved interface as adiabatic modulations of straight edge states under constant magnetic fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the propagation of wavepackets along curved interfaces between
topological, magnetic materials. Our Hamiltonian is a massive Dirac operator
with a magnetic potential. We construct semiclassical wavepackets propagating
along the curved interface as adiabatic modulations of straight edge states
under constant magnetic fields. While in the magnetic-free case, the
wavepackets propagate coherently at speed one, here they experience slowdown,
dispersion, and Aharonov - Bohm effects. Several numerical simulations
illustrate our results.
Related papers
- Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
We study the dynamics of EVBs in magnetic fields using exact solutions of the relativistic paraxial equation in magnetic fields.
We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles.
This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Realizing Altermagnetism in Fermi-Hubbard Models with Ultracold Atoms [0.0]
We show how a d-wave altermagnetic phase can be realized with ultracold fermionic atoms in optical lattices.
One of the defining characteristics of altermagnetism, the anisotropic spin transport, can be probed with trap-expansion experiments.
arXiv Detail & Related papers (2023-12-15T19:01:20Z) - Relativistic Landau quantization in non-uniform magnetic field and its
applications to white dwarfs and quantum information [0.0]
We find that the degeneracy of Landau levels, which arises in the case of the constant magnetic field, lifts out when the field is variable.
Also the varying magnetic field splits Landau levels of electrons with zero angular momentum from positive angular momentum, unlike the constant field which only can split the levels between positive and negative angular momenta.
arXiv Detail & Related papers (2021-10-18T18:00:06Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Higher-order topological quantum paramagnets [0.0]
Quantum paramagnets are strongly-correlated phases of matter where competing interactions frustrate magnetic order down to zero temperature.
In certain cases, quantum fluctuations induce instead topological order, supporting, in particular, fractionalized quasi-particle excitations.
We show how magnetic frustration can also give rise to higher-order topological properties.
arXiv Detail & Related papers (2021-07-21T14:47:32Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.