Real-time two-photon interference from distinct molecules on the same
chip
- URL: http://arxiv.org/abs/2201.07140v1
- Date: Tue, 18 Jan 2022 17:32:16 GMT
- Title: Real-time two-photon interference from distinct molecules on the same
chip
- Authors: R. Duquennoy, M. Colautti, R. Emadi, P. Majumder, P. Lombardi and C.
Toninelli
- Abstract summary: Scalability and miniaturization are hallmarks of solid-state platforms for photonic quantum technologies.
Main challenge is two-photon interference from distinct emitters on chip.
A promising platform is that of molecular single photon sources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scalability and miniaturization are hallmarks of solid-state platforms for
photonic quantum technologies. Still a main challenge is two-photon
interference from distinct emitters on chip. This requires local tuning,
integration and novel approaches to understand and tame noise processes. A
promising platform is that of molecular single photon sources. Thousands of
molecules with optically tuneable emission frequency can be easily isolated in
solid matrices and triggered with pulsed excitation. We here discuss
Hong-Ou-Mandel interference experiments using several couples of molecules
within few tens of microns. Quantum interference is observed in real time,
enabling the analysis of local environment effects at different time-scales.
Related papers
- Many-body gap protection of motional dephasing of an optical clock transition [0.0]
Quantum simulation and metrology with atoms, ions, and molecules often rely on using light fields to manipulate their internal states.
absorbed momentum from the light fields can induce spin-orbit coupling and associated motional-induced (Doppler) dephasing.
We experimentally demonstrate the suppression of Doppler dephasing on a strontium optical clock transition by enabling atomic interactions through a shared mode.
arXiv Detail & Related papers (2024-09-24T17:37:47Z) - On-chip interference of scattering from two individual molecules in
plastic [0.0]
Integrated photonic circuits offer a promising route for studying coherent cooperative effects of a controlled collection of quantum emitters.
We demonstrate efficient coupling of a pair of organic molecules embedded in a plastic film to a TiO$$ microdisc resonator on a glass chip.
We report on a large collective extinction of the incident light in the forward direction and the destructive interference of its scattering in the backward direction.
arXiv Detail & Related papers (2023-01-26T10:30:01Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Tailoring the degree of entanglement of two coherently coupled quantum
emitters [0.0]
Controlled molecular entanglement can serve as a test-bench to decipher more complex physical or biological mechanisms governed by the coherent coupling.
We implement hyperspectral imaging to identify pairs of coupled organic molecules trapped in a low temperature matrix.
We also demonstrate far-field selective excitation of the long-lived subradiant delocalized states with a laser field tailored in amplitude and phase.
arXiv Detail & Related papers (2021-09-22T08:30:59Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Universal pair-polaritons in a strongly interacting Fermi gas [0.0]
We report on experiments using molecular transitions in a strongly interacting Fermi gas, directly coupling cavity photons to pairs of atoms.
The dependence of the pair-polariton spectrum on interatomic interactions is universal, independent of the transition used.
This represents a magnification of many-body effects by two orders of magnitude in energy.
arXiv Detail & Related papers (2021-03-03T15:06:06Z) - Laser-induced frequency tuning of Fourier-limited single-molecule
emitters [0.0]
We observe how a focused laser beam can shift by hundreds-time their natural linewidth at the single molecule scale.
Results are interpreted as effects of a photo-ionization cascade, leading to a stable electric field.
System enables fabrication-free, independent tuning of multiple molecules integrated on the same photonic chip.
arXiv Detail & Related papers (2020-05-25T16:14:36Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.