Tailoring the degree of entanglement of two coherently coupled quantum
emitters
- URL: http://arxiv.org/abs/2109.10584v1
- Date: Wed, 22 Sep 2021 08:30:59 GMT
- Title: Tailoring the degree of entanglement of two coherently coupled quantum
emitters
- Authors: J.-B Trebbia (LP2N), Q Deplano (LP2N), P Tamarat (LP2N), B Lounis
(LP2N)
- Abstract summary: Controlled molecular entanglement can serve as a test-bench to decipher more complex physical or biological mechanisms governed by the coherent coupling.
We implement hyperspectral imaging to identify pairs of coupled organic molecules trapped in a low temperature matrix.
We also demonstrate far-field selective excitation of the long-lived subradiant delocalized states with a laser field tailored in amplitude and phase.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The control and manipulation of quantum-entangled non-local states is a
crucial step for the development of quantum information processing. A promising
route to achieve such states on a wide scale is to couple solid-state quantum
emitters through their coherent dipole-dipole interactions. Entanglement in
itself is challenging, as it requires both nanometric distances between
emitters and nearly degenerate electronic transitions. Implementing
hyperspectral imaging to identify pairs of coupled organic molecules trapped in
a low temperature matrix, we reach distinctive spectral signatures of maximal
molecular entanglement by tuning the optical resonances of the quantum emitters
by Stark effect. We also demonstrate far-field selective excitation of the
long-lived subradiant delocalized states with a laser field tailored in
amplitude and phase. Interestingly, optical nanoscopy images of the entangled
molecules unveil novel spatial signatures that result from quantum
interferences in their excitation pathways and reveal the exact locations of
each quantum emitter. Controlled molecular entanglement can serve as a
test-bench to decipher more complex physical or biological mechanisms governed
by the coherent coupling and paves the way towards the realization of new
quantum information processing platforms.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Manybody Interferometry of Quantum Fluids [0.19528996680336308]
'Manybody Ramsey interferometry' combines adiabatic state preparation and Ramsey spectroscopy.
This work opens new avenues for characterizing manybody states, paving the way for quantum computers to efficiently probe quantum matter.
arXiv Detail & Related papers (2023-09-11T18:01:17Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes.
This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity.
arXiv Detail & Related papers (2021-07-06T15:27:23Z) - Rare-Earth Molecular Crystals with Ultra-narrow Optical Linewidths for
Photonic Quantum Technologies [0.0]
We report on europium molecular crystals that exhibit linewidths in the 10s of kHz range, orders of magnitude narrower than other molecular centers.
Results illustrate the utility of rare-earth molecular crystals as a new platform for photonic quantum technologies.
arXiv Detail & Related papers (2021-05-14T22:19:59Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.