論文の概要: Learned Cone-Beam CT Reconstruction Using Neural Ordinary Differential
Equations
- arxiv url: http://arxiv.org/abs/2201.07562v1
- Date: Wed, 19 Jan 2022 12:32:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-20 18:10:14.476161
- Title: Learned Cone-Beam CT Reconstruction Using Neural Ordinary Differential
Equations
- Title(参考訳): ニューラル正規微分方程式を用いた学習コーンビームCT再構成
- Authors: Mareike Thies, Fabian Wagner, Mingxuan Gu, Lukas Folle, Lina Felsner,
Andreas Maier
- Abstract要約: 逆問題に対する反復的再構成アルゴリズムは、問題に関する解析的知識とデータから学んだモジュールを組み合わせる柔軟性を提供する。
計算トモグラフィでは,2次元ファンビームから3次元コーンビームデータへのアプローチの延長が困難である。
本稿では, 数値積分による残差定式化における再構成問題の解法として, ニューラル常微分方程式を用いることを提案する。
- 参考スコア(独自算出の注目度): 8.621792868567018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learned iterative reconstruction algorithms for inverse problems offer the
flexibility to combine analytical knowledge about the problem with modules
learned from data. This way, they achieve high reconstruction performance while
ensuring consistency with the measured data. In computed tomography, extending
such approaches from 2D fan-beam to 3D cone-beam data is challenging due to the
prohibitively high GPU memory that would be needed to train such models. This
paper proposes to use neural ordinary differential equations to solve the
reconstruction problem in a residual formulation via numerical integration. For
training, there is no need to backpropagate through several unrolled network
blocks nor through the internals of the solver. Instead, the gradients are
obtained very memory-efficiently in the neural ODE setting allowing for
training on a single consumer graphics card. The method is able to reduce the
root mean squared error by over 30% compared to the best performing classical
iterative reconstruction algorithm and produces high quality cone-beam
reconstructions even in a sparse view scenario.
- Abstract(参考訳): 逆問題に対する反復的再構成アルゴリズムは、問題に関する解析的知識とデータから学んだモジュールを組み合わせる柔軟性を提供する。
これにより、測定データとの一貫性を確保しつつ、高い復元性能を実現する。
計算トモグラフィでは、そのようなアプローチを2Dファンビームから3Dコーンビームデータに拡張することは、そのようなモデルをトレーニングするのに必要となる、極めて高いGPUメモリのために困難である。
本稿では,ニューラルネットワークを用いた数値積分による残差定式化における再構成問題の解法を提案する。
トレーニングでは、複数の未ロールネットワークブロックをバックプロパゲートしたり、ソルバの内部を経由する必要はない。
代わりに、勾配はニューラルネットワークode設定で非常にメモリ効率良く取得され、単一のコンシューマのグラフィックカードでトレーニングできる。
本手法は,古典的反復再構成アルゴリズムと比較して根平均2乗誤差を30%以上削減し,スパースビューシナリオにおいても高品質なコーンビーム再構成を実現できる。
関連論文リスト
- R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
非視線イメージング(NLOS)は、視線で測定されたデータから3次元の隠れたシーンを再構築することを目的としている。
曲率正規化に基づく新しいNLOS再構成モデルを提案する。
提案したアルゴリズムを,合成データセットと実データセットの両方で評価する。
論文 参考訳(メタデータ) (2023-01-01T14:10:43Z) - Simulator-Based Self-Supervision for Learned 3D Tomography
Reconstruction [34.93595625809309]
従来の機械学習アプローチでは、トレーニングのために別のアルゴリズムで計算された参照再構成が必要となる。
我々は、ノイズの多い2次元X線データのみを用いて、完全に自己教師された方法でモデルを訓練する。
以上の結果から,既存の再建技術よりも視覚的忠実度が高く,PSNRが優れていた。
論文 参考訳(メタデータ) (2022-12-14T13:21:37Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
本研究では,リカレントニューラルネットワーク (R2N2) にランゲ・クッタニューラルネットワークを一般化し,リカレントニューラルネットワークを最適化した反復アルゴリズムの設計を行う。
本稿では, 線形方程式系に対するクリロフ解法, 非線形方程式系に対するニュートン・クリロフ解法, 常微分方程式に対するルンゲ・クッタ解法と類似の繰り返しを計算問題クラスの入力・出力データに対して提案した超構造内における重みパラメータの正規化について述べる。
論文 参考訳(メタデータ) (2022-11-22T16:30:33Z) - Loop Unrolled Shallow Equilibrium Regularizer (LUSER) -- A
Memory-Efficient Inverse Problem Solver [26.87738024952936]
逆問題では、潜在的に破損し、しばしば不適切な測定結果から、いくつかの基本的な関心のシグナルを再構築することを目的としている。
浅い平衡正規化器(L)を用いたLUアルゴリズムを提案する。
これらの暗黙のモデルは、より深い畳み込みネットワークと同じくらい表現力があるが、トレーニング中にはるかにメモリ効率が良い。
論文 参考訳(メタデータ) (2022-10-10T19:50:37Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - A memory-efficient neural ODE framework based on high-level adjoint
differentiation [4.063868707697316]
我々は、高レベル離散アルゴリズムの微分に基づく新しいニューラルODEフレームワーク、PNODEを提案する。
PNODEは他の逆精度の手法と比較してメモリ効率が最も高いことを示す。
論文 参考訳(メタデータ) (2022-06-02T20:46:26Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
我々は、数値コードをより安価でプロジェクションベースのサロゲートモデルに置き換えている。
このモデルは、数値的な方法で必要となるすべての前の電場を計算することなく、所定の時間で電場を近似することができる。
このモデルでは, シミュレーションパラメータの狭い範囲におけるデータの摂動問題において, 高品質な再構成が示されており, 大規模な入力データに利用することができる。
論文 参考訳(メタデータ) (2021-06-01T08:46:04Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
学習に基づく3次元再構成に対応する3次元形状表現は、機械学習とコンピュータグラフィックスにおいてオープンな問題である。
ニューラル3D再構成に関するこれまでの研究は、利点だけでなく、ポイントクラウド、ボクセル、サーフェスメッシュ、暗黙の関数表現といった制限も示していた。
Deformable Tetrahedral Meshes (DefTet) を, ボリューム四面体メッシュを再構成問題に用いるパラメータ化として導入する。
論文 参考訳(メタデータ) (2020-11-03T02:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。