論文の概要: Temporal Computer Organization
- arxiv url: http://arxiv.org/abs/2201.07742v1
- Date: Wed, 19 Jan 2022 17:31:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 10:11:25.121928
- Title: Temporal Computer Organization
- Title(参考訳): 一時的コンピュータ組織
- Authors: James E. Smith
- Abstract要約: この文書は、時間的過渡と通信し、計算する技術で実装された計算システムに焦点を当てている。
一般に説明されているが、スパイクニューラルネットワークの実装は主要な関心事である。
- 参考スコア(独自算出の注目度): 0.6091702876917281
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This document is focused on computing systems implemented in technologies
that communicate and compute with temporal transients. Although described in
general terms, implementations of spiking neural networks are of primary
interest. As background, an algebra for constructing temporal networks is
summarized. Then, a system organization consisting of synchronized segments is
described. The segments are feedforward internally with feedback between
segments. A synchronizing clock resets network segments at the end of each
computation step or cycle. In its basic form, the synchronizing clock merely
performs a reset function. In the context of neural networks, this satisfies
biological plausibility. However, functional completeness is restricted. This
restriction is removed by allowing use of the synchronizing clock as an
additional function input that acts as a temporal reference value.
- Abstract(参考訳): この文書は、一時的なトランジェントと通信し、計算する技術に実装されたコンピューティングシステムに焦点を当てている。
一般に説明されているが、スパイクニューラルネットワークの実装が主な関心事である。
背景として、時間ネットワークを構築するための代数を要約する。
次に、同期セグメントからなるシステム構成について述べる。
セグメントは内部的にセグメント間のフィードバックでフィードフォワードされる。
同期クロックは、各計算ステップまたはサイクルの最後にネットワークセグメントをリセットする。
基本形式では、同期クロックは単にリセット関数を実行するだけである。
ニューラルネットワークの文脈では、これは生物学的確率を満たす。
しかし、機能完全性は制限されている。
この制限は、同期クロックを時間基準値として機能する追加関数入力として使用することで取り除かれる。
関連論文リスト
- Queuing dynamics of asynchronous Federated Learning [15.26212962081762]
計算速度の異なるノードを用いた非同期フェデレーション学習機構について検討する。
本稿では、より複雑な遅延を低減できる中央サーバのための一様でないサンプリング方式を提案する。
画像分類問題に対する現状の非同期アルゴリズムよりも,提案手法の大幅な改善が明らかとなった。
論文 参考訳(メタデータ) (2024-02-12T18:32:35Z) - Image segmentation with traveling waves in an exactly solvable recurrent
neural network [71.74150501418039]
繰り返しニューラルネットワークは、シーンの構造特性に応じて、画像をグループに効果的に分割できることを示す。
本稿では,このネットワークにおけるオブジェクトセグメンテーションのメカニズムを正確に記述する。
次に、グレースケール画像中の単純な幾何学的対象から自然画像まで、入力をまたいで一般化するオブジェクトセグメンテーションの簡単なアルゴリズムを実証する。
論文 参考訳(メタデータ) (2023-11-28T16:46:44Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
時間的ネットワーク上での機械学習の方法は、一般的に2つの制限のうちの少なくとも1つを示す。
ネットワークのライングラフは,各インタラクションのノードを含むもので,インタラクション間の時間差に基づいて,このグラフのエッジを重み付けする。
実世界のネットワークにおける実験結果から,エッジ分類と時間リンク予測の両方において,本手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-09-30T18:24:13Z) - Recovering the Graph Underlying Networked Dynamical Systems under
Partial Observability: A Deep Learning Approach [7.209528581296429]
時系列間の依存グラフを復元するグラフ構造同定の問題について検討する。
観測時系列から計算した特徴ベクトルを考案し,これらの特徴が線形分離可能であることを示す。
私たちはこれらの機能を使って畳み込みニューラルネットワーク(CNN)を訓練します。
論文 参考訳(メタデータ) (2022-08-08T20:32:28Z) - Generating fine-grained surrogate temporal networks [12.7211231166069]
代理時間ネットワークを生成するための新しい簡易な手法を提案する。
本手法は、入力ネットワークを時間とともに進化する星状構造に分解する。
次に、これらの構造をビルディングブロックとして使用して、代理時間ネットワークを生成する。
論文 参考訳(メタデータ) (2022-05-18T09:38:22Z) - AEGNN: Asynchronous Event-based Graph Neural Networks [54.528926463775946]
イベントベースのグラフニューラルネットワークは、標準のGNNを一般化して、イベントを"進化的"時間グラフとして処理する。
AEGNNは同期入力で容易に訓練でき、テスト時に効率的な「非同期」ネットワークに変換できる。
論文 参考訳(メタデータ) (2022-03-31T16:21:12Z) - Decentralized Optimization with Heterogeneous Delays: a Continuous-Time
Approach [6.187780920448871]
非同期アルゴリズムを解析するための新しい連続時間フレームワークを提案する。
我々は,スムーズな凸関数と強い凸関数の和を最小化するために,完全に非同期な分散アルゴリズムを記述する。
論文 参考訳(メタデータ) (2021-06-07T13:09:25Z) - Ensemble perspective for understanding temporal credit assignment [1.9843222704723809]
繰り返しニューラルネットワークにおける各接続は、正確な重み値ではなく、スパイクとスラブの分布によってモデル化されていることを示す。
本モデルでは,ネットワーク全体の性能を決定する重要な接続を明らかにする。
したがって、再帰的なニューラルネットワークにおける時間的クレジット割り当てをアンサンブルの観点から研究することを約束している。
論文 参考訳(メタデータ) (2021-02-07T08:14:05Z) - A Prospective Study on Sequence-Driven Temporal Sampling and Ego-Motion
Compensation for Action Recognition in the EPIC-Kitchens Dataset [68.8204255655161]
行動認識はコンピュータビジョンにおける最上位の研究分野の一つである。
エゴモーション記録シーケンスは重要な関連性を持つようになった。
提案手法は,このエゴモーションやカメラの動きを推定して対処することを目的としている。
論文 参考訳(メタデータ) (2020-08-26T14:44:45Z) - Asynchronous Decentralized Learning of a Neural Network [49.15799302636519]
我々は、ARockと呼ばれる非同期コンピューティングフレームワークを利用して、分散シナリオでフィードフォワードニューラルネットワーク(SSFN)を推定する自己サイズ推定と呼ばれるディープニューラルネットワークを学習する。
非同期分散SSFNは1ノードのアクティベーションと一方の通信を許容することで通信ボトルネックを緩和し、通信オーバーヘッドを大幅に低減する。
実験結果において、非同期dSSFNと従来の同期dSSFNを比較し、特に通信ネットワークが疎い場合に、非同期dSSFNの競合性能を示す。
論文 参考訳(メタデータ) (2020-04-10T15:53:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。