Machine Learning Enhances Algorithms for Quantifying Non-Equilibrium
Dynamics in Correlation Spectroscopy Experiments to Reach Frame-Rate-Limited
Time Resolution
- URL: http://arxiv.org/abs/2201.07889v1
- Date: Mon, 17 Jan 2022 02:36:23 GMT
- Title: Machine Learning Enhances Algorithms for Quantifying Non-Equilibrium
Dynamics in Correlation Spectroscopy Experiments to Reach Frame-Rate-Limited
Time Resolution
- Authors: Tatiana Konstantinova, Lutz Wiegart, Maksim Rakitin, Anthony M
DeGennaro and Andi M Barbour
- Abstract summary: We integrate a denoising autoencoder model into algorithms for analysis of non-equilibrium two-time intensity-intensity correlation functions.
Noise reduction allows to extract the parameters that characterize the sample dynamics with temporal resolution limited only by frame rates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analysis of X-ray Photon Correlation Spectroscopy (XPCS) data for
non-equilibrium dynamics often requires manual binning of age regions of an
intensity-intensity correlation function. This leads to a loss of temporal
resolution and accumulation of systematic error for the parameters quantifying
the dynamics, especially in cases with considerable noise. Moreover, the
experiments with high data collection rates create the need for automated
online analysis, where manual binning is not possible. Here, we integrate a
denoising autoencoder model into algorithms for analysis of non-equilibrium
two-time intensity-intensity correlation functions. The model can be applied to
an input of an arbitrary size. Noise reduction allows to extract the parameters
that characterize the sample dynamics with temporal resolution limited only by
frame rates. Not only does it improve the quantitative usage of the data, but
it also creates the potential for automating the analytical workflow. Various
approaches for uncertainty quantification and extension of the model for
anomalies detection are discussed.
Related papers
- Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
We introduce deep unrolled self-supervised learning, which alleviates the need for such data by training a sequence-specific, model-based autoencoder.
Our proposed method exceeds the performance of its supervised counterparts.
arXiv Detail & Related papers (2024-03-25T17:40:32Z) - Statistical Mechanics of Dynamical System Identification [3.1484174280822845]
We develop a statistical mechanical approach to analyze sparse equation discovery algorithms.
In this framework, statistical mechanics offers tools to analyze the interplay between complexity and fitness.
arXiv Detail & Related papers (2024-03-04T04:32:28Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Noise Reduction in X-ray Photon Correlation Spectroscopy with
Convolutional Neural Networks Encoder-Decoder Models [0.0]
We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions.
CNN-ED models are based on Convolutional Neural Network-Decoder (CNN-ED) models.
We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics parameters from two-time correlation functions.
arXiv Detail & Related papers (2021-02-07T18:38:59Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
We propose a neural dynamic mode decomposition for estimating a lift function based on neural networks.
With our proposed method, the forecast error is backpropagated through the neural networks and the spectral decomposition.
Our experiments demonstrate the effectiveness of our proposed method in terms of eigenvalue estimation and forecast performance.
arXiv Detail & Related papers (2020-12-11T08:34:26Z) - Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics
and Extract Noise Probability Distributions from Data [4.996878640124385]
SINDy is a framework for the discovery of parsimonious dynamic models and equations from time-series data.
We develop a variant of the SINDy algorithm that integrates automatic differentiation and recent time-stepping constrained by Rudy et al.
We show the method can identify a diversity of probability distributions including Gaussian, uniform, Gamma, and Rayleigh.
arXiv Detail & Related papers (2020-09-12T23:52:25Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.