Statistical Mechanics of Dynamical System Identification
- URL: http://arxiv.org/abs/2403.01723v1
- Date: Mon, 4 Mar 2024 04:32:28 GMT
- Title: Statistical Mechanics of Dynamical System Identification
- Authors: Andrei A. Klishin, Joseph Bakarji, J. Nathan Kutz, Krithika Manohar
- Abstract summary: We develop a statistical mechanical approach to analyze sparse equation discovery algorithms.
In this framework, statistical mechanics offers tools to analyze the interplay between complexity and fitness.
- Score: 3.1484174280822845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recovering dynamical equations from observed noisy data is the central
challenge of system identification. We develop a statistical mechanical
approach to analyze sparse equation discovery algorithms, which typically
balance data fit and parsimony through a trial-and-error selection of
hyperparameters. In this framework, statistical mechanics offers tools to
analyze the interplay between complexity and fitness, in analogy to that done
between entropy and energy. To establish this analogy, we define the
optimization procedure as a two-level Bayesian inference problem that separates
variable selection from coefficient values and enables the computation of the
posterior parameter distribution in closed form. A key advantage of employing
statistical mechanical concepts, such as free energy and the partition
function, is in the quantification of uncertainty, especially in in the
low-data limit; frequently encountered in real-world applications. As the data
volume increases, our approach mirrors the thermodynamic limit, leading to
distinct sparsity- and noise-induced phase transitions that delineate correct
from incorrect identification. This perspective of sparse equation discovery,
is versatile and can be adapted to various other equation discovery algorithms.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time [0.0]
In engineering, accurately modeling nonlinear dynamic systems from data contaminated by noise is both essential and complex.
The integration of continuous-time ordinary differential equations (ODEs) is crucial for aligning theoretical models with discretely sampled data.
This paper demonstrates the application of a probabilistic numerical method for solving ODEs in the joint parameter-state identification of nonlinear dynamic systems.
arXiv Detail & Related papers (2024-04-19T14:52:14Z) - Response Theory via Generative Score Modeling [0.0]
We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the Generalized Fluctuation-Dissipation Theorem (GFDT)
The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics.
arXiv Detail & Related papers (2024-02-01T21:38:10Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
We infer equations with non-Gaussian L'evy noise from available data to reasonably predict dynamical behaviors.
We establish a theoretical framework and design a numerical algorithm to compute the asymmetric L'evy jump measure, drift and diffusion.
This method will become an effective tool in discovering the governing laws from available data sets and in understanding the mechanisms underlying complex random phenomena.
arXiv Detail & Related papers (2021-07-21T14:50:36Z) - A Data-Driven Approach for Discovering Stochastic Dynamical Systems with
Non-Gaussian Levy Noise [5.17900889163564]
We develop a new data-driven approach to extract governing laws from noisy data sets.
First, we establish a feasible theoretical framework, by expressing the drift coefficient, diffusion coefficient and jump measure.
We then design a numerical algorithm to compute the drift, diffusion coefficient and jump measure, and thus extract a governing equation with Gaussian and non-Gaussian noise.
arXiv Detail & Related papers (2020-05-07T21:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.