論文の概要: CELESTIAL: Classification Enabled via Labelless Embeddings with
Self-supervised Telescope Image Analysis Learning
- arxiv url: http://arxiv.org/abs/2201.08001v1
- Date: Thu, 20 Jan 2022 04:59:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-22 00:17:47.150788
- Title: CELESTIAL: Classification Enabled via Labelless Embeddings with
Self-supervised Telescope Image Analysis Learning
- Title(参考訳): 自己教師付き望遠鏡画像解析学習によるラベルレス埋め込みによる分類
- Authors: Suhas Kotha, Anirudh Koul, Siddha Ganju, and Meher Kasam
- Abstract要約: 衛星画像の疎ラベル化を効果的に活用するための,自己教師型学習パイプラインCELESTIALを構築した。
このパイプラインは、まずラベルのないデータのイメージ表現を学習し、提供されたラベルの知識を微調整するアルゴリズムであるSimCLRをうまく適応させる。
その結果,CELESTIALはラベルの3分の1しか必要とせず,教師あり手法が実験データセット上で同じ精度を達成する必要があることがわかった。
- 参考スコア(独自算出の注目度): 0.34998703934432673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common class of problems in remote sensing is scene classification, a
fundamentally important task for natural hazards identification, geographic
image retrieval, and environment monitoring. Recent developments in this field
rely label-dependent supervised learning techniques which is antithetical to
the 35 petabytes of unlabelled satellite imagery in NASA GIBS. To solve this
problem, we establish CELESTIAL-a self-supervised learning pipeline for
effectively leveraging sparsely-labeled satellite imagery. This pipeline
successfully adapts SimCLR, an algorithm that first learns image
representations on unlabelled data and then fine-tunes this knowledge on the
provided labels. Our results show CELESTIAL requires only a third of the labels
that the supervised method needs to attain the same accuracy on an experimental
dataset. The first unsupervised tier can enable applications such as reverse
image search for NASA Worldview (i.e. searching similar atmospheric phenomenon
over years of unlabelled data with minimal samples) and the second supervised
tier can lower the necessity of expensive data annotation significantly. In the
future, we hope we can generalize the CELESTIAL pipeline to other data types,
algorithms, and applications.
- Abstract(参考訳): リモートセンシングにおける一般的な問題は、自然災害の特定、地理画像検索、環境モニタリングのための基本的な重要なタスクであるシーン分類である。
この分野での最近の進歩は、NASA GIBSの35ペタバイトの衛星画像に反するラベル依存の教師あり学習技術に依存している。
この問題を解決するために,衛星画像の疎ラベル化を効果的に活用するための自己教師付き学習パイプラインCELESTIALを構築した。
このパイプラインは、まずラベルのないデータのイメージ表現を学習し、提供されたラベルの知識を微調整するアルゴリズムであるSimCLRをうまく適応させる。
その結果,CELESTIALはラベルの3分の1しか必要とせず,教師あり手法が実験データセット上で同じ精度を達成する必要があることがわかった。
第1の教師なし層は、NASA Worldviewのリバースイメージ検索(例えば、最小限のサンプルで何年もの間、同様の大気現象を探索する)のような応用を可能にし、第2の教師なし層は高価なデータアノテーションの必要性を著しく低減することができる。
将来的には、CELESTIALパイプラインを他のデータタイプ、アルゴリズム、アプリケーションに一般化できることを願っています。
関連論文リスト
- SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Cold PAWS: Unsupervised class discovery and addressing the cold-start
problem for semi-supervised learning [0.30458514384586394]
本稿では, 自己教師付き学習, クラスタリング, 多様体学習技術に基づく新しい手法を提案する。
我々は、CIFAR10、Imagenette、DeepWeeds、EuroSATなどの公開データセットを使って、我々のアプローチをテストする。
文献における他の手法と比較して,より単純なアプローチで検討したデータセットに対して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-05-17T09:17:59Z) - Unlocking the Use of Raw Multispectral Earth Observation Imagery for Onboard Artificial Intelligence [3.3810628880631226]
本研究は,ターゲットイベントの検出のためのデータセット作成を自動化する新しい手法を提案する。
提案手法は、まず、空間帯域登録とジオレファレンスからなるパイプラインを適用することにより、生データを処理する。
Level-1C製品上で、イベント固有の最先端アルゴリズムを活用することで、ターゲットイベントを検出する。
本研究では,温熱ホットスポットを含むSentinel-2生データの最初のデータセットであるTHRawS (Thermal Hotspots in Raw Sentinel-2 data) を実現するために提案手法を適用した。
論文 参考訳(メタデータ) (2023-05-12T09:54:21Z) - Enhancing Self-Supervised Learning for Remote Sensing with Elevation
Data: A Case Study with Scarce And High Level Semantic Labels [1.534667887016089]
本研究は、地球観測下流タスクに適用された事前学習モデルに対する、教師なしと教師なしのハイブリッド学習手法を提案する。
我々は、事前訓練モデルに対する対照的なアプローチと画素単位の回帰事前テキストタスクを組み合わせることで、粗い標高マップを予測する。
論文 参考訳(メタデータ) (2023-04-13T23:01:11Z) - Self-Supervised Pretraining on Satellite Imagery: a Case Study on
Label-Efficient Vehicle Detection [0.0]
超高解像度光衛星画像における物体検出のためのドメイン内自己教師型表現学習について検討する。
我々は、世界地図の大規模な土地利用分類データセットを用いて、Momentum Contrastフレームワークの拡張による表現の事前訓練を行う。
次に,Preligensプロプライエタリなデータに基づいて,車両の詳細な検出と分類を行う実世界のタスクにおいて,このモデルが持つ伝達可能性について検討する。
論文 参考訳(メタデータ) (2022-10-21T08:41:22Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
本稿では,ハズフリー画像とその場でのハズ密度測定を併用した,最初の実画像ベンチマークデータセットを提案する。
このデータセットはコントロールされた環境で生成され、プロの煙発生装置がシーン全体を覆っている。
このデータセットのサブセットは、CVPR UG2 2022 チャレンジの Haze Track における Object Detection に使用されている。
論文 参考訳(メタデータ) (2022-06-13T19:14:06Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
リモートセンシングデータのためのラベルの自動生成のためのビッグデータ処理パイプラインを評価する。
我々は,大規模データプラットフォームであるIBM PAIRSを用いて,密集都市部でそのようなラベルを動的に生成する。
論文 参考訳(メタデータ) (2022-01-31T20:02:22Z) - Active Learning for Improved Semi-Supervised Semantic Segmentation in
Satellite Images [1.0152838128195467]
半教師付きテクニックは、ラベル付きサンプルの小さなセットから擬似ラベルを生成する。
そこで我々は,ラベル付きトレーニングデータの集合を高度に代表的に選択するために,アクティブな学習に基づくサンプリング戦略を提案する。
我々はmIoUの27%の改善を報告し、2%のラベル付きデータをアクティブラーニングサンプリング戦略を用いて報告した。
論文 参考訳(メタデータ) (2021-10-15T00:29:31Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Streaming Self-Training via Domain-Agnostic Unlabeled Images [62.57647373581592]
視覚認識モデル学習の過程を民主化することを目的としたストリーミング自己学習(SST)を提案する。
SSTの鍵となるのは、(1)ドメインに依存しない未ラベル画像により、追加の知識や監督なしにいくつかのラベル付き例でより良いモデルを学ぶことができ、(2)学習は継続的なプロセスであり、学習更新のスケジュールを構築することで行うことができる。
論文 参考訳(メタデータ) (2021-04-07T17:58:39Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
季節的コントラスト(SeCo)は、リモートセンシング表現のドメイン内事前トレーニングにラベルのないデータを活用するための効果的なパイプラインである。
SeCoは、転送学習を容易にし、再リモートセンシングアプリケーションの急速な進歩を可能にするために公開されます。
論文 参考訳(メタデータ) (2021-03-30T18:26:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。