Transfer Learning for Fault Diagnosis of Transmission Lines
- URL: http://arxiv.org/abs/2201.08018v1
- Date: Thu, 20 Jan 2022 06:36:35 GMT
- Title: Transfer Learning for Fault Diagnosis of Transmission Lines
- Authors: Fatemeh Mohammadi Shakiba, Milad Shojaee, S. Mohsen Azizi, and Mengchu
Zhou
- Abstract summary: A novel transfer learning framework based on a pre-trained LeNet-5 convolutional neural network is proposed.
It is able to diagnose faults for different transmission line lengths and impedances by transferring the knowledge from a source neural network to predict a dissimilar target dataset.
- Score: 55.971052290285485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent artificial intelligence-based methods have shown great promise in the
use of neural networks for real-time sensing and detection of transmission line
faults and estimation of their locations. The expansion of power systems
including transmission lines with various lengths have made a fault detection,
classification, and location estimation process more challenging. Transmission
line datasets are stream data which are continuously collected by various
sensors and hence, require generalized and fast fault diagnosis approaches.
Newly collected datasets including voltages and currents might not have enough
and accurate labels (fault and no fault) that are useful to train neural
networks. In this paper, a novel transfer learning framework based on a
pre-trained LeNet-5 convolutional neural network is proposed. This method is
able to diagnose faults for different transmission line lengths and impedances
by transferring the knowledge from a source convolutional neural network to
predict a dissimilar target dataset. By transferring this knowledge, faults
from various transmission lines, without having enough labels, can be diagnosed
faster and more efficiently compared to the existing methods. To prove the
feasibility and effectiveness of this methodology, seven different datasets
that include various lengths of transmission lines are used. The robustness of
the proposed methodology against generator voltage fluctuation, variation in
fault distance, fault inception angle, fault resistance, and phase difference
between the two generators are well shown, thus proving its practical values in
the fault diagnosis of transmission lines.
Related papers
- ViT LoS V2X: Vision Transformers for Environment-aware LoS Blockage Prediction for 6G Vehicular Networks [20.953587995374168]
We propose a Deep Learning-based approach that combines Convolutional Neural Networks (CNNs) and customized Vision Transformers (ViTs)
Our method capitalizes on the synergistic strengths of CNNs and ViTs to extract features from time-series multimodal data.
Our results show that the proposed approach achieves high accuracy and outperforms state-of-the-art solutions, achieving more than $95%$ accurate predictions.
arXiv Detail & Related papers (2024-06-27T01:38:09Z) - Adversarial Learning for Feature Shift Detection and Correction [45.65548560695731]
Feature shifts can occur in many datasets, including in multi-sensor data, where some sensors are malfunctioning, or in structured data, where faulty standardization and data processing pipelines can lead to erroneous features.
In this work, we explore using the principles of adversarial learning, where the information from several discriminators trained to distinguish between two distributions is used to both detect the corrupted features and fix them in order to remove the distribution shift between datasets.
arXiv Detail & Related papers (2023-12-07T18:58:40Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
Fault detection and diagnosis of electrical motors is of utmost importance in ensuring the safe and reliable operation of industrial systems.
The existing data-driven deep learning approaches for machine fault diagnosis rely extensively on huge amounts of labeled samples.
We propose a foundational model-based Active Learning framework that utilizes less amount of labeled samples.
arXiv Detail & Related papers (2023-11-27T03:25:12Z) - An Intelligent Approach to Detecting Novel Fault Classes for Centrifugal
Pumps Based on Deep CNNs and Unsupervised Methods [0.0]
In this paper, we assume a partial knowledge of the system faults and use the corresponding data to train a convolutional neural network.
A combination of t-SNE method and clustering techniques is then employed to detect novel faults.
arXiv Detail & Related papers (2023-09-22T10:10:30Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures.
The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks.
arXiv Detail & Related papers (2022-11-15T15:04:06Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
Bolts are the most numerous fasteners in transmission lines and are prone to losing their split pins.
How to realize the automatic pin-missing defect detection for bolts in transmission lines so as to achieve timely and efficient trouble shooting is a difficult problem.
In this paper, an automatic detection model called Automatic Visual Shape Clustering Network (AVSCNet) for pin-missing defect is constructed.
arXiv Detail & Related papers (2020-01-17T10:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.