Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines
- URL: http://arxiv.org/abs/2001.06236v1
- Date: Fri, 17 Jan 2020 10:57:37 GMT
- Title: Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines
- Authors: Zhenbing Zhao, Hongyu Qi, Yincheng Qi, Ke Zhang, Yongjie Zhai, Wenqing
Zhao
- Abstract summary: Bolts are the most numerous fasteners in transmission lines and are prone to losing their split pins.
How to realize the automatic pin-missing defect detection for bolts in transmission lines so as to achieve timely and efficient trouble shooting is a difficult problem.
In this paper, an automatic detection model called Automatic Visual Shape Clustering Network (AVSCNet) for pin-missing defect is constructed.
- Score: 1.602803566465659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bolts are the most numerous fasteners in transmission lines and are prone to
losing their split pins. How to realize the automatic pin-missing defect
detection for bolts in transmission lines so as to achieve timely and efficient
trouble shooting is a difficult problem and the long-term research target of
power systems. In this paper, an automatic detection model called Automatic
Visual Shape Clustering Network (AVSCNet) for pin-missing defect is
constructed. Firstly, an unsupervised clustering method for the visual shapes
of bolts is proposed and applied to construct a defect detection model which
can learn the difference of visual shape. Next, three deep convolutional neural
network optimization methods are used in the model: the feature enhancement,
feature fusion and region feature extraction. The defect detection results are
obtained by applying the regression calculation and classification to the
regional features. In this paper, the object detection model of different
networks is used to test the dataset of pin-missing defect constructed by the
aerial images of transmission lines from multiple locations, and it is
evaluated by various indicators and is fully verified. The results show that
our method can achieve considerably satisfactory detection effect.
Related papers
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - Anomaly Detection in Automated Fibre Placement: Learning with Data
Limitations [3.103778949672542]
We present a comprehensive framework for defect detection and localization in Automated Fibre Placement.
Our approach combines unsupervised deep learning and classical computer vision algorithms.
It efficiently detects various surface issues while requiring fewer images of composite parts for training.
arXiv Detail & Related papers (2023-07-15T22:13:36Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Improved Orientation Estimation and Detection with Hybrid Object
Detection Networks for Automotive Radar [1.53934570513443]
We present novel hybrid architectures that combine grid- and point-based processing to improve radar-based object detection networks.
We show that a point-based model can extract neighborhood features, leveraging the exact relative positions of points, before grid rendering.
This has significant benefits for a following convolutional detection backbone.
arXiv Detail & Related papers (2022-05-03T06:29:03Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
A novel transfer learning framework based on a pre-trained LeNet-5 convolutional neural network is proposed.
It is able to diagnose faults for different transmission line lengths and impedances by transferring the knowledge from a source neural network to predict a dissimilar target dataset.
arXiv Detail & Related papers (2022-01-20T06:36:35Z) - Reference-based Defect Detection Network [57.89399576743665]
The first issue is the texture shift which means a trained defect detector model will be easily affected by unseen texture.
The second issue is partial visual confusion which indicates that a partial defect box is visually similar with a complete box.
We propose a Reference-based Defect Detection Network (RDDN) to tackle these two problems.
arXiv Detail & Related papers (2021-08-10T05:44:23Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Auto-Classifier: A Robust Defect Detector Based on an AutoML Head [2.685668802278155]
We show that the use of Convolutional Neural Networks achieves better results than traditional methods.
We also show that Auto-Classifier out-performs all other methods, by achieving 100% accuracy and 100% AUC results throughout all the datasets.
arXiv Detail & Related papers (2020-09-03T10:39:02Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.